簡易檢索 / 詳目顯示

研究生: 張立偉
Chang, Li-Wei
論文名稱: 結合特徵萃取與情境式分類法改善多光譜影像之崩塌地辨識
Combining Feature Extraction and Contextual Classification for Landslide Identification based on Multispectral Imagery
指導教授: 謝璧妃
Hsieh, Pi-Fuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 54
中文關鍵詞: 福衛二號影像特徵萃取崩塌地辨識
外文關鍵詞: feature extraction, FORMOSAT-2 imagery, landslide identification
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在台灣,使用福衛二號影像對災害監測之崩塌地辨識相對於其他衛星有幾點優勢,例如:收費低廉、再訪頻率高、全島拍攝等等。但是,福衛二號影像僅含四個光譜頻帶,這樣有限的資訊對於崩塌地自動判識是不能滿足實際上的需求,例如:崩塌地與細支流部分常互相混淆,造成誤判。本研究中,我們站在分類技術角度上來克服福衛二號影像光譜資訊不足的困難。
    首先,為了增加崩塌地與其他類別間的分離度,我們試圖擷取更多具鑑別度的特徵,像是紋理與地形上的特徵。紋理特徵是利用對數極座標-小波包轉換,從福衛二號影像中的光譜資訊萃取而得;另外,地形坡度特徵則是從數值高程資料獲得。再者,我們利用一個情境式分類器結合光譜與空間資訊對於特徵相似物的分類。利用數個實地勘察的區域來分析辨識實驗結果,顯示我們的方法是可行的並且得到明顯的改善。

    To identify landslides for disaster monitoring, FORMOSAT-2 imagery has the advantages of low cost and frequent revisit over any other satellite imagery currently available in Taiwan. However, the images with four spectral bands are not capable enough to distinguish landslides from other ground cover types, such as small river channels. This study proposes to overcome the problem of spectral incapability using the following techniques. First, we explore more discriminative features, such as texture and topographical features, in order to improve class separability. Texture features are extracted from the FORMOSAT-2 imagery itself using the log-polar wavelet packet transformation. A topographical feature ‘slope’ is derived from an auxiliary Digital Elevation Model (DEM) dataset. Second, we employ a contextual classifier because combining spectral and spatial information is helpful for homogeneous object identification. Field investigation has been conducted on several sites to validate the result of analysis. Experiments show the feasibility of our approach to landslide identification based on multispectral imagery.

    ABSTRACT IV 1. Introduction 1 2. Backgrounds 5 2.1 Previous Work 5 2.2 Wavelet Transform 7 2.3 Empirical Mode Decomposition 8 2.3.1 The EMD Algorithm 9 2.4 Markov Random Field 11 3. Discriminant Features 13 3.1 Spectral Features 13 3.2 Slope Feature 14 3.3 Texture Features 17 3.3.1 Standard 2D Wavelet Packet Transform 18 3.3.2 Log-Polar Transform 20 3.3.3 Adaptive Row Shift invariant Wavelet Packet Transform 22 4. Modified Markov Random Field 26 5. Experimental Results 30 5.1 Data Sets 30 5.2 Scale-invariant Texture 31 5.3 Features 33 5.4 Feature Reduction and Feature Fusion 41 5.4.1 Feature Reduction 41 5.4.2 Feature Fusion 43 5.5 MRF-based Contextual Classifiers 46 6. Conclusions 50 References 51

    [1]S.-H. Liu and C.-W. Lin, “Automatic Identification of Landslides in Satellite Images : A Proposed New Approach,” Master Thesis of Earth Sciences, National Cheng Kung University, Taiwan, 2002.
    [2]T. Kusaka, M. Shikada, and Y. Kawata, “Extraction of landslide areas using spatial features of topographic basins,” IEEE Conf. Geosci. Remote Sensing IGARSS’92 International, vol. 2, pp. 938-940, 1992.
    [3]C.-W. Lin, Y.-.L. Lee, M.-L. Huang, W.-C. Lai, B.-D. Yuan, and C.-Y. Huang, “Characteristics of surface ruptures associated with the Chi-Chi earthquake of September 21, 1999,” Engineering Geology, vol. 71, no. 1-2, pp. 13-30, Jan. 2004.
    [4]S. Lee, “Development and Application of Landslide Susceptibility Analysis Techniques Using Geographic Information System (GIS),” Dissertation, Yonsei University, Korea, 2000.
    [5]R. Guillande, “Automatic mapping of the landslide hazard on the island of Tahati based on digital satellite data,” Mapping Sciences and Remote Sensing, vol. 32, no.1, pp. 59-70, 1995.
    [6]T. G. Philip, “Geomorphological signature: classification of aggregated slope unit object s from digital elevation and remote sensing data,” Earth Surface Processes and Landforms, vol. 23, pp. 581-594, 1998.
    [7]A. Refice, F. Bovenga, L. Guerriero, J. Wasowski, “DInSAR applications to landslide studies,” IEEE Conf. Digital Object Identifier IGARSS’2001, vol. 1, pp. 144-146, July 2001.
    [8]V. Singhroy, K. E. Mattar, and A. L. Gray, “Landslide characteristics in Canada using interferometric SAR and combined SAR and TM images,” Adv. Space Res., vol. 3, pp. 465-476, 1998.
    [9]D. Tarchi, N. Casagli, R. Fanti, D. D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, “Landslide monitoring by using ground-based SAR interferometry : an example of application to the Tessina landslide in Italy,“ Journal of Engineering Geology, vol. 68, pp. 15-30, July 2002.
    [10]K. M. Rodriguez, J. K. Weissel, and Y. Kim, ”Classification of landslide surfaces using fully polarimetric SAR : examples from Taiwan,” IEEE Conf. Geosci. Remote Sensing Symposium IGARSS’2002, vol. 5, pp. 2918-2920, 2002.
    [11]T.-C. Wu and H.-H Chen, “Study on The Regional Characteristics of Landslide in Taiwan,” Master Thesis of Forestry and Resource Conservation, National Taiwan University, Taiwan, 1993.
    [12]C.-M. Pun and M.-C. Lee, “Log-polar wavelet energy signatures for rotation and scale invariant texture classification,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 5, pp. 590-603, May 2003.
    [13]Q. Jackson and D. A. Landgrebe, “Adaptive Bayesian contextual classification based on Markov random fields,” IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 11, pp. 2454-2463, Nov. 2002.
    [14]S. Z. Li, Markov Random Field Modeling in Image Analysis, Springer, Tokyo, 2001.
    [15]R. Nishii, “A Markov random field-based approach to decision-level fusion for remote sensing image classification,” IEEE Trans. Geosci. Remote Sensing, vol. 41, no. 10, pp. 2316-2319, Oct. 2003.
    [16]R. L. Kettig and D. A. Landgrebe, “Classification of multispectral image data by extraction and classification of homogeneous objects,” IEEE Trans. Geosci. Electronics, vol. GE-14, no. 1, pp. 19-26, Jan. 1976.
    [17]D. M. Cruden, “A Simple Definition of a Landslide,” Engineering Geology, no. 43, pp. 27-29, 1991.
    [18]T. Kusaka, M. Shikada, and Y. Kawata, “Extraction of landslide areas using spatial features of topographic basins,” IEEE Conf. Geosci. Remote Sensing IGARSS’92 International, vol. 2, pp. 938-940, 1992.
    [19]R. Guillande, “Automatic mapping of the landslide hazard on the island of Tahati based on digital satellite data,” Mapping Sciences and Remote Sensing, vol. 32, no.1, pp. 59-70, 1995.
    [20]T. G. Philip, “Geomorphological signature: classification of aggregated slope unit object s from digital elevation and remote sensing data,” Earth Surface Processes and Landforms, vol. 23, pp. 581-594, 1998.
    [21]S.-M. Huang, “The Study of the Application of SPOT Image on Detecting the Change of Bare Area─ An Illumination of Ho-She Area,” Master Thesis of Forestry and Resource Conservation, National Taiwan University, Taiwan, 2000.
    [22]C.-H. Chen, and T.-Y. Chou, “Study on Slide Land Recognition and Change From Remote Sensing and Landscape Ecology Technology,” Master Thesis of Land Manegement, Feng Chia University, Taiwan, 2003.
    [23]A. Refice, F. Bovenga, L. Guerriero, J. Wasowski, “DInSAR applications to landslide studies,” IEEE Conf. Digital Object Identifier IGARSS’2001, vol. 1, pp. 144-146, July 2001.
    [24]V. Singhroy, K. E. Mattar, and A. L. Gray, “Landslide characteristics in Canada using interferometric SAR and combined SAR and TM images,” Adv. Space Res., vol. 3, pp. 465-476, 1998.
    [25]D. Tarchi, N. Casagli, R. Fanti, D. D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, “Landslide monitoring by using ground-based SAR interferometry : an example of application to the Tessina landslide in Italy,“ Journal of Engineering Geology, vol. 68, pp. 15-30, July 2002.
    [26]K. M. Rodriguez, J. K. Weissel, and Y. Kim, ”Classification of landslide surfaces using fully polarimetric SAR : examples from Taiwan,” IEEE Conf. Geosci. Remote Sensing Symposium IGARSS’2002, vol. 5, pp. 2918-2920, 2002.
    [27]A. Graps, “An introduction to wavelets,” IEEE Trans. Computational Science and Engineering, vol. 2, no. 2, pp. 50-61, July 1995.
    [28]D. Charalampidis and T. Kasparis, “Wavelet-based rotational invariant roughness features for texture classification and segmentation,” IEEE Trans. Image Processing, vol. 11, no. 8, pp. 825-837, Aug. 2002.
    [29]S. Pittner and S. V. Kamarthi, “Feature extraction from wavelet coefficients for pattern recognition tasks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 1, pp. 83-88, Jan. 1999.
    [30]Y. Mallet, D. Coomans, J. Kautsky, and O. D. Vel, “Classification using adaptive wavelets for feature extraction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 10, pp. 1058-1066, Oct. 1997.
    [31]M. Basseville, A. Benveniste, K. C. Chou, S. A. Golden, R. Nikoukhah, and A. S. Willsky, “Modeling and estimation of multiresolution stochastic processes,” IEEE Trans. Information Theory, vol. 38, no. 2, pp. 766-784, Mar. 1992.
    [32]N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time series analysis,” in Proc. Roy. Soc. London A, vol. 454, pp. 903-995, 1998.
    [33]G. Rilling, P. Flandrin, and P. Goncalvès, “On empirical mode decomposition and its algorithms,” Laboratoire de Physique (UMR CNRS 5672).
    [34]P. Flandrin, G. Rilling, and P. Goncalves, “Empirical Mode Decomposition as a filter bank,’’ IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112-114, Feb. 2003.
    [35]G. Hazel, “Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection,” IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 3, pp. 1199-1211, May 2000.
    [36]R. Chellappa and S. Chatterjee, “Classification of textures using Gaussian Markov random fields,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-33, no. 4, pp. 959-963, Aug. 1985.
    [37]A. Khotanzad and R. L. Kashyap, “Feature selection for texture recognition based on image synthesis,” IEEE Trans. Systems, Man and Cybernetics, vol. 17, no. 6, pp. 1087-1095, Nov. 1987.
    [38]F. S. Cohen and D. B. Cooper, “Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian random fields,” IEEE Trans. Pattern Anal. Machine Intell., vol. 9, no.2, pp. 195-219, Mar. 1987.
    [39]D. E. Melas and S. P. Wilson, “Double Markov random field and Bayesian image segmentation,” IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 357-365, Feb. 2002.
    [40]T.-C. Wu and H.-H Chen, “Study on The Regional Characteristics of Landslide in Taiwan,” Master Thesis of Forestry and Resource Conservation, National Taiwan University, Taiwan, 1993.
    [41]L. H. Siew, R. M. Hodgson, and E. J. Wood, “Texture measures for carpet wear assessment,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, no. 7, pp. 92-105, Jan. 1988.
    [42]C. C. Chen, J. S. DaPonte, and M. D. Fox, “Fractal feature analysis and classification in medical imaging,” IEEE Trans. Medical Imaging, vol. 8, no. 1, pp. 133-142, June 1989.
    [43]R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Systems, Man, and Cybertinetics, vol. 3, no. 6, pp. 610-621, Nov. 1973.
    [44]A. Laine and J. Fan, “Texture classification by wavelet packet signatures,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, no. 11, pp. 1186-1191, Nov. 1993.
    [45]S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 7, pp. 674-693, July 1989.
    [46]T. Randen and J. H. Hushy, “Filtering for texture classification: a comparative study,” IEEE Trans. Pattern Anal. Machine Intell., vol. 21, no. 4, pp. 291-310, April 1999.
    [47]J. Liang and T.W. Parks, “A translation-invariant wavelet representation algorithm with applications,” IEEE Trans. Signal Processing, vol. 44, no. 2, pp. 225-232, Feb. 1996.
    [48]J. C. Pesquet, H. Hrim, and H. Carfantan, “Time-invariant orthonormal wavelet representations,” IEEE Trans. Signal Processing, vol. 44, no. 8, pp. 1964-1970, Aug. 1996.
    [49]S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intell., vol. 6, no. 7, pp. 721-741, June 1984.

    下載圖示 校內:2008-09-08公開
    校外:2008-09-08公開
    QR CODE