| 研究生: |
余奕佑 Yu, Yi-Yu |
|---|---|
| 論文名稱: |
含水楊亞胺之二噻吩一吡咯衍生物的合成及其在螢光化學感測器之應用 Dithienylpyrrole Derivative with Salicylimine Group: Synthesis and Fluorescent Chemosensory Characteristics Toward Zinc Ion |
| 指導教授: |
陳雲
Chen, Yun |
| 共同指導教授: |
吳文中
Wu, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 螢光感測器 、水楊亞胺 、二噻吩一吡咯 、光誘導電子轉移 、鋅離子 |
| 外文關鍵詞: | fluorescent sensor, salicylimine, dithienylpyrrole, photoinduced electron transfer, zinc ion |
| 相關次數: | 點閱:85 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Zn2+離子為人類和其他生物重要的微量元素之一,過量或缺少均易導致疾病,故其簡易、快速及精確的檢測方法有其必要性。螢光感測器應用於對金屬離子的感測,能檢驗在環境中或生物體內的含量顯示其重要性。相對其它檢測儀器有易操作、量測快速、成本低的優點,已可應用於疾病診斷或水質評估等用途。
本研究利用Suzuki-Miyaura coupling反應成功地合成出含水楊亞胺結構的二噻吩一吡咯衍生物(S1)作為金屬離子螢光感測器,利用吸收光譜及螢光放射光譜探討其在溶液中對金屬離子的辨識能力與結合模式,S1本身因光誘導電子轉移(photo-induced electron transfer, PET)的作用,在乙醇水溶液中(EtOH/H2O = 9/1)螢光強度低,但在Zn2+離子存在下螢光強度大幅增強(λem = 465 nm,23倍),原因是水楊亞胺基辨識基團結合Zn2+離子,抑制亞胺基上氮的孤對電子轉移(PET),讓激發態電子以放光形式回到基態產生螢光增強。由Job plot實驗得到S1與鋅離子形成錯合物的配位比例是2:1,由濃度滴定實驗得到偵測極限是1.28×10-8 M,在UV燈照射下可用肉眼觀察到S1與Zn2+離子結合產生藍光。在雙離子競爭實驗,確認僅有水楊亞胺結構S0會同時對Zn2+、Al3+、Mg2+離子螢光增強,而S1對於Zn2+離子選擇性較佳,能排除Al3+、Mg2+離子對辨識基團螢光增強的影響。評估在不同有機溶劑系統下,皆能對Zn2+離子保持選擇性。此外,以S1及錯合物S12Zn進行DFT模擬分析,獲得最適化的結構及能階差計算,結果表明錯合物S12Zn的結合模式是穩定的系統。
We have been synthesized a novel salicylimine fluorescent sensor S1 with dithienylpyrrole moiety through Suzuki-Miyaura coupling and imine condensation. In addition, S0 without the dithienylpyrrole moiety was also prepared for comparison. Their structures were characterized by NMR spectroscopy and element analysis. S1 exhibited weak fluorescence due to photoinduced electron transfer (PET). However, upon the addition of Zn2+ the fluorescence intensity was greatly enhanced at 465 nm due to the inhibition of PET. From Job plot, the stoichiometric ratio of S1 to Zn2+ was 2:1. The limit of detection (LOD) towards Zn2+ was 1.28×10-8 M and the binding constants was 4.37×105 M-2. S1 shows good selectivity toward Zn2+ in dual ions competitive experiment and in various solvent systems, respectively. The binding mode of S1 toward Zn2+ using DFT simulation analysis shows that complex S12Zn is a stable system. Our results show that S1 demonstrates good sensitivity and selectivity toward Zn2+ which is applicable as turn-on fluorescent sensor for environmental analysis.
[1]Madhav, S., A. Ahamad, A.K. Singh, J. Kushawaha, J.S. Chauhan, S. Sharma, and P. Singh, Water Pollutants: Sources and Impact on the Environment and Human Health, in Sensors in Water Pollutants Monitoring: Role of Material, D. Pooja, et al., Editors. 2020, Springer Singapore: Singapore. p. 43-62.
[2]Berhanu, A.L., Gaurav, I. Mohiuddin, A.K. Malik, J.S. Aulakh, V. Kumar, and K.H. Kim, A review of the applications of Schiff bases as optical chemical sensors. Trac-Trends in Analytical Chemistry, 2019. 116: p. 74-91.
[3]Chasapis, C.T., P.A. Ntoupa, C.A. Spiliopoulou, and M.E. Stefanidou, Recent aspects of the effects of zinc on human health. Arch Toxicol, 2020. 94(5): p. 1443-1460.
[4]Luo, W., M. Liu, T. Yang, X. Yang, Y. Wang, and H. Xiang, Fluorescent Zn(II) Chemosensor Mediated by a 1,8-Naphthyridine Derivative and It's Photophysical Properties. ChemistryOpen, 2018. 7(8): p. 639-644.
[5]Czarnik, A.W., Fluorescent Chemosensors of Ion and Molecule Recognition - Recent Applications to Pyrophosphate and to Dopamine Sensing. Interfacial Design and Chemical Sensing, 1994. 561: p. 314-323.
[6]Valeur, B. and I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000. 205: p. 3-40.
[7]Cammann, K., U. Lemke, A. Rohen, J. Sander, H. Wilken, and B. Winter, Chemical Sensors and Biosensors - Principles and Applications. Angewandte Chemie-International Edition in English, 1991. 30(5): p. 516-539.
[8]Hulanicki, A., S. Glab, and F. Ingman, Chemical Sensors Definitions and Classification. Pure and Applied Chemistry, 1991. 63(9): p. 1247-1250.
[9]Eggins, B.R., Chemical sensors and biosensors. Analytical techniques in the sciences. 2002, Chichester ; Hoboken, NJ: J. Wiley. xxi, 273 p.
[10]What are Chemical Sensors?, in Chemical Sensors and Biosensors. p. 1-20.
[11]Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. Seventh edition. ed. 2018, Australia: Cengage Learning. xix, 959 pages.
[12]Sauer, M., J. Hofkens, and J. Enderlein, Handbook of fluorescence spectroscopy and imaging : from single molecules to ensembles. 2011, Weinheim: Wiley-VCH. ix, 281 p.
[13]Valeur, B. and M.N. Berberan-Santos, Molecular fluorescence : principles and applications. Second edition. ed. 2012, Weinheim, Germany Chichester, England: Wiley-VCH ;Wiley-VCH Verlag GmbH & Co. KGaA. xxi, 569 pages.
[14]Sharma, S. and K.S. Ghosh, Overview on recently reported fluorometric sensors for the detection of copper ion based on internal charge transfer (ICT), paramagnetic effect and aggregation induced emission (AIE) mechanisms. Journal of Molecular Structure, 2021. 1237.
[15]Deems, J.C., J.H. Reibenspies, H.S. Lee, and R.D. Hancock, Strategies for a fluorescent sensor with receptor and fluorophore designed for the recognition of heavy metal ions. Inorganica Chimica Acta, 2020. 499.
[16]Lakowicz, J.R., Principles of fluorescence spectroscopy. 3rd ed. 2006, New York: Springer. xxvi, 954 p.
[17]Wang, S.H., S. Fabiano, S. Himmelberger, S. Puzinas, X. Crispin, A. Salleo, and M. Berggren, Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(34): p. 10599-10604.
[18]Kim, J.S. and D.T. Quang, Calixarene-derived fluorescent probes. Chemical Reviews, 2007. 107(9): p. 3780-3799.
[19]Lohr, H.G. and F. Vogtle, Chromoionophores and Fluoroionophores - a New Class of Dye Reagents. Accounts of Chemical Research, 1985. 18(3): p. 65-72.
[20]Kafafi, Z.H., Organic electroluminescence. Optical engineering. 2005, Boca Raton, FL: CRC Press, Taylor & Francis. xiv, 514 p., 12 p. of plates.
[21]May, V. and O. Kühn, Charge and energy transfer dynamics in molecular systems. 3rd, rev. and enl. ed. 2011, Weinheim: Wiley-VCH. xix, 562 p.
[22]Hussain, S.A., An Introduction to Fluorescence Resonance Energy Transfer (FRET). Energy, 2009. 132.
[23]Marquis, D. and J.P. Desvergne, A Cooperative Effect in Sodium-Cation Complexation by a Macrocyclic Bis(9,10)Anthraceno-Crown Ether in the Ground-State and in the Excited-State. Chemical Physics Letters, 1994. 230(1-2): p. 131-136.
[24]Bouaslaurent, H., A. Castellan, M. Daney, J.P. Desvergne, G. Guinand, P. Marsau, and M.H. Riffaud, Cation-Directed Photochemistry of an Anthraceno-Crown Ether. Journal of the American Chemical Society, 1986. 108(2): p. 315-317.
[25]Hong, Y., J.W. Lam, and B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 2009(29): p. 4332-53.
[26]Luo, J., Z. Xie, J.W. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B.Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001(18): p. 1740-1.
[27]Das, A.K. and S. Goswami, 2-Hydroxy-1-naphthaldehyde: A versatile building block for the development of sensors in supramolecular chemistry and molecular recognition. Sensors and Actuators B-Chemical, 2017. 245: p. 1062-1125.
[28]Li, L., F. Liu, and H.-W. Li, Selective fluorescent probes based on CN isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 79(5): p. 1688-1692.
[29]Wu, J., W. Liu, J. Ge, H. Zhang, and P. Wang, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews, 2011. 40(7): p. 3483-95.
[30]Wu, J.-S., W.-M. Liu, X.-Q. Zhuang, F. Wang, P.-F. Wang, S.-L. Tao, X.-H. Zhang, S.-K. Wu, and S.-T. Lee, Fluorescence Turn On of Coumarin Derivatives by Metal Cations: A New Signaling Mechanism Based on C=N Isomerization. Organic Letters, 2007. 9(1): p. 33-36.
[31]Gupta, A. and N. Kumar, A review of mechanisms for fluorescent ‘‘turn-on’’ probes to detect Al3+ ions. RSC Advances, 2016. 6(108): p. 106413-106434.
[32]Azarias, C., Š. Budzák, A.D. Laurent, G. Ulrich, and D. Jacquemin, Tuning ESIPT fluorophores into dual emitters. Chemical Science, 2016. 7(6): p. 3763-3774.
[33]Sasaki, S., G.P.C. Drummen, and G.-i. Konishi, Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of Materials Chemistry C, 2016. 4(14): p. 2731-2743.
[34]Schiff, H., Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Annalen der Chemie, 1864. 131(1): p. 118-119.
[35]Jia, Y. and J.B. Li, Molecular Assembly of Schiff Base Interactions: Construction and Application. Chemical Reviews, 2015. 115(3): p. 1597-1621.
[36]Qin, W.L., S. Long, M. Panunzio, and S. Biondi, Schiff Bases: A Short Survey on an Evergreen Chemistry Tool. Molecules, 2013. 18(10): p. 12264-12289.
[37]Kajal, A., S. Bala, S. Kamboj, N. Sharma, and V. Saini, Schiff Bases: A Versatile Pharmacophore. Journal of Catalysts, 2013. 2013.
[38]Zhou, Y., H.N. Kim, and J. Yoon, A selective ‘Off–On’ fluorescent sensor for Zn2+ based on hydrazone–pyrene derivative and its application for imaging of intracellular Zn2+. Bioorganic & Medicinal Chemistry Letters, 2010. 20(1): p. 125-128.
[39]Dong, Z., Y. Guo, X. Tian, and J. Ma, Quinoline group based fluorescent sensor for detecting zinc ions in aqueous media and its logic gate behaviour. Journal of Luminescence, 2013. 134: p. 635-639.
[40]Gao, C., X. Jin, X. Yan, P. An, Y. Zhang, L. Liu, H. Tian, W. Liu, X. Yao, and Y. Tang, A small molecular fluorescent sensor for highly selectivity of zinc ion. Sensors and Actuators B: Chemical, 2013. 176: p. 775-781.
[41]Choi, Y.W., G.J. Park, Y.J. Na, H.Y. Jo, S.A. Lee, G.R. You, and C. Kim, A single schiff base molecule for recognizing multiple metal ions: A fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors and Actuators B: Chemical, 2014. 194: p. 343-352.
[42]Mahapatra, A.K., S.K. Manna, C.D. Mukhopadhyay, and D. Mandal, Pyrophosphate-selective fluorescent chemosensor based on ratiometric tripodal-Zn(II) complex: Application in logic gates and living cells. Sensors and Actuators B: Chemical, 2014. 200: p. 123-131.
[43]Sarkar, D., A. Pramanik, S. Jana, P. Karmakar, and T.K. Mondal, Quinoline based reversible fluorescent ‘turn-on’ chemosensor for the selective detection of Zn2+: Application in living cell imaging and as INHIBIT logic gate. Sensors and Actuators B: Chemical, 2015. 209: p. 138-146.
[44]Mukherjee, S. and S. Talukder, A reversible luminescent quinoline based chemosensor for recognition of Zn2+ ions in aqueous methanol medium and its logic gate behavior. Journal of Luminescence, 2016. 177: p. 40-47.
[45]Dong, W.-K., S.F. Akogun, Y. Zhang, Y.-X. Sun, and X.-Y. Dong, A reversible “turn-on” fluorescent sensor for selective detection of Zn2+. Sensors and Actuators B: Chemical, 2017. 238: p. 723-734.
[46]Kürti, L.s. and B. Czakó, Strategic applications of named reactions in organic synthesis : background and detailed mechanisms. 2005, Amsterdam ; Boston: Elsevier Academic Press. lii, 758 p.
[47]Miyaura, N. and A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 1995. 95(7): p. 2457-2483.
[48]Sumimoto, M., N. Iwane, T. Takahama, and S. Sakaki, Theoretical study of trans-metalation process in palladium-catalyzed borylation of iodobenzene with diboron. Journal of the American Chemical Society, 2004. 126(33): p. 10457-10471.
[49]Lin, H.Y., P.Y. Cheng, C.F. Wan, and A.T. Wu, A turn-on and reversible fluorescence sensor for zinc ion. Analyst, 2012. 137(19): p. 4415-4417.
[50]Li, H., S.J. Zhang, C.L. Gong, J.Z. Wang, and F. Wang, A Turn-on and Reversible Fluorescence Sensor for Zinc Ion Based on 4,5-Diazafluorene Schiff Base. Journal of Fluorescence, 2016. 26(5): p. 1555-1561.
[51]Zhou, Z.C., W.J. Niu, Z.Q. Lin, Y.H. Cui, X. Tang, and Y.J. Li, A novel "turn-off" fluorescent sensor for Al3+ detection based on quinolinecarboxamide-coumarin. Inorganic Chemistry Communications, 2020. 121.
[52]Kim, D.H., Y.S. Im, H. Kim, and C. Kim, Solvent-dependent selective fluorescence sensing of Al3+ and Zn2+ using a single Schiff base. Inorganic Chemistry Communications, 2014. 45: p. 15-19.
[53]Park, G.J., D.Y. Park, K.M. Park, Y. Kim, S.J. Kim, P.S. Chang, and C. Kim, Solvent-dependent chromogenic sensing for Cu2+ and fluorogenic sensing for Zn2+ and Al3+: a multifunctional chemosensor with dual-mode. Tetrahedron, 2014. 70(41): p. 7429-7438.
[54]Karachi, N., O. Azadi, R. Razavi, A. Tahvili, and Z. Parsaee, Combinatorial experimental and DFT theoretical evaluation of a nano novel thio-dicarboxaldehyde based Schiff base supported on a thin polymer film as a chemosensor for Pb2+ detection. Journal of Photochemistry and Photobiology a-Chemistry, 2018. 360: p. 152-165.
[55]Fanna, D.J., A.R. Craze, I. Etchells, S. Bhattacharyya, J.K. Clegg, E.G. Moore, C.E. Marjo, A. Trinchi, G. Wei, J.K. Reynolds, and F. Li, Anion tuning of Zn2+ architectures using a Tris-base salicylic ligand. Crystengcomm, 2019. 21(29): p. 4267-4274.
[56]Qin, J.C., L. Fan, and Z.Y. Yang, A small-molecule and resumable two-photon fluorescent probe for Zn2+ based on a coumarin Schiff-base. Sensors and Actuators B-Chemical, 2016. 228: p. 156-161.
[57]Budri, M., G. Naik, S. Patil, P. Kadolkar, K. Gudasi, and S. Inamdar, An ESIPT blocked highly ICT based molecular probe to sense Zn (II) ion through turn on optical response: Experimental and theoretical studies. Journal of Photochemistry and Photobiology a-Chemistry, 2020. 390.
[58]Krishnaveni, K., M. Iniya, A. Siva, N. Vidhyalakshmi, S. Sasikumar, U.K.P. Ramesh, and S. Murugesan, Naphthyl hydrazone anchored with nitrosalicyl moiety as fluorogenic and chromogenic receptor for heavy metals (Ag + , Hg 2+) and biologically important F-ion and its live cell imaging applications in HeLa cells and Zebra fish embryos. Journal of Molecular Structure, 2020. 1217.