簡易檢索 / 詳目顯示

研究生: 陳安榆
Chen, An-Yu
論文名稱: 利用快速光電動圖紋法搭配微珠式免疫反應純化微量病毒檢體
Virus Purification by Bead-Based Immunoreaction and Rapid Electrokinetic Patterning
指導教授: 莊漢聲
Chuang, Han-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 49
中文關鍵詞: 快速電動圖紋法微珠式免疫反應粒子分選金奈米粒子純化
外文關鍵詞: Rapid electrokinetic patterning, bead-based immunoreaction, particle sorting, AuNPs, purification
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來生醫檢測技術朝實驗室晶片(Lab-on-a-chip, LOC)方向發展,將繁複的實驗過程簡化並濃縮在微晶片上,節省樣本並縮短時耗。非接觸式粒子操控技術將有利於晶片上的小體積樣本的微奈米等級操作。快速電動圖紋法(REP)是一個較新穎的光電動操控粒子技術,不需要高功率雷射、可自由操縱粒子,且晶片製程簡單。本研究欲以LOC的概念開發REP在生醫領域上的應用。
    在病毒的研究當中,因為其濃度在血液樣本中非常低,進行病毒純化往往需要較大的樣本體積進行濃度梯度離心法,非常耗時,且無法分辨密度相當的物質。利用抗體的專一性結合REP,本研究提出三步驟改善純化病毒的過程。第一步:利用微珠式免疫反應抓取病毒;第二步:利用REP分堆粒子;第三步:透過分離液滴取得純化後的樣本。本研究分別以模擬的方式探討各步驟的可行性。
    實驗結果顯示第一步驟可以奈米金模擬病毒構造證實抓取病毒的能力。改用B型肝炎病毒以及腸病毒71型也可以在第一步驟中被粒子抓取,但效率會受到類病毒粒子與抗原的干擾。第二步驟中以分選大小粒子模擬抓取病毒之粒子與雜質之間的分離。雖然無法藉由調整頻率達成目標,但以移動雷射增加粒子被聚集的速度差是可行的。實驗也確定可以REP將粒子搜集至液滴的一側,並且分離效率可達93% 。第三步驟則可透過表面修飾鐵氟龍形成親疏水介面的方法,達成液滴一分為二的分離。此研究驗證此三步驟用於純化樣本的潛力,未來可將三步驟結合並完成純化。但純化目標物轉為蛋白質將會是較佳的應用層面,且據文獻亦可配合偵測濃度的功能。另外,尚未有文獻指出粒子分堆可藉由不同粒子受反應的速度不同而達成,此新發現在未來將可作為REP深入探討的項目。

    Recently, bio-detection techniques are developed to carry out the concept of Lab-on-a-chip (LOC) for time saving and sample reduction. Particle manipulation techniques are useful to bead-based applications. Rapid electrokinetic patterning (REP) is an optoelectrokinetic tool for particle manipulation. REP features low laser power, addressable manipulation, and free of complicated fabrication. As a result, we conducted virus purification based on REP to prove its capability in the field of LOC.
    In virology, virus purification is necessary because the virus concentration in the blood samples is extremely low. Therefore, large sample volume is required in some purification methods, such as the density-gradient centrifugation. However, it is time consuming and it cannot separate substance with similar density. Combining the bead-based immunoreaction with REP system to achieve the virus concentration. The study was separated and evaluated in three steps. First step: capture virus by bead-based immunoreaction; second step: sort particles by REP; third step: extract the concentrated sample by droplet separation. This study investigated the feasibility of each step separately in a simulated manner.
    The results showed the first step, the capability of the virus capturing is evaluated by virus-mimicking gold nanoparticles (AuNPs). The same capability is confirmed when using Hepatitis B (HBV) and Enterovirus 71 (EV71) samples, but the efficiency was interfered by virus-like-particles (VLPs) and antigens. Different sizes of particles is mixed to simulate the virus captured particles sorting from the other components in a sample in the second step. Sorting particles into two sides cannot be reached by applying different electric frequency, but it can be achieved by moving the laser spot to increase the difference of particle assembly speed. From the experiment, the particles can be concentrated on one side of the droplet by REP manipulation and the separated efficiency reached 93%. In the third step, making hydrophilic and hydrophobic regions can be used in separating a droplet into two individual ones. This study proved the feasibility of three steps process in biomedical application, but according to previous research converting the purpose to protein simultaneous purification with detection would be a better strategy. Furthermore, sorting particle by unequal response speed of different sizes of particles has never been proposed, it can be an issue of the further research on REP.

    摘要 I ABSTRACT III 誌謝 V CONTENTS VI List of Figure IX List of Table XIII CHAPTER 1 INTRODUCTION 1 1.1 Overview and Motivation 1 1.2 Rapid Electrokinetic Patterning 2 1.2.1 Theory of Rapid Electrokinetic Patterning 2 1.2.2 Particle Trapping and Sorting 5 1.3 Bead-based Immunoreaction 7 1.4 Virus and Virus Purification 9 1.5 Droplet Separation 10 1.6 Aims of the Thesis 11 CHAPTER 2 MATERIALS AND METHODS 12 2.1 Flow Chart 12 2.2 Rapid Electrokinetic Patterning System 13 2.2.1 Chip Fabrication 13 2.2.2 System Configuration 14 2.3 Preparation of Samples 15 2.3.1 Preparation of Particle Solutions 15 2.3.2 Preparation of Virus Samples 15 2.3.3 Preparation of Antibodies-conjugated Particles 16 2.4 Bead-based Immunoreaction 18 2.4.1 Fluorescent Immunostaining 18 2.4.2 Cryo-Negative Staining and TEM Observation 18 2.4.3 Antibodies-conjugated AuNPs Capturing 18 2.4.4 Hepatitis B and Enterovirus 71 Capturing 19 2.5 Surface Treatments on the Chips 20 2.6 Data Analysis 20 CHAPTER 3 RESULTS AND DISCUSSION 21 3.1 Determination of Particle Size 21 3.1.1 Particle Concentration and Translocation 21 3.1.2 Limitation of Transmission Electronic Microscopy 22 3.2 Bead-based Immunoreaction 23 3.2.1 Antibody-conjugated Particles 23 3.2.2 AuNPs Mimicking and Capturing 26 3.2.3 HBV Capturing 28 3.2.4 EV71 Capturing 30 3.3 Particle Sorting 32 3.3.1 Effect of Particle Size 33 3.3.2 Particle Collection to One Side 39 3.4 Droplet Separation 40 CHAPTER 4 CONCLUSION 41 CHAPTER 5 PROSPECTS 43 REFERENCE 44

    [1] A. Sakudo and T. Onodera. “Virus capturing using anionic polymer-coated magnetic beads (review)” International Journal of Molecular Medicine, vol. 30, pp. 3-7, 2012
    [2] Fan, Y. J., Sheen, H. J., Hsu, C. J., Liu, C. P., Lin, S. M., and Wu, K. C. “A quantitative immunosensing technique based on the measurement of nanobeads' Brownian motion.” Biosensors & Bioelectronics, vol. 25, no. 4, pp. 688-694, 2009.
    [3] Ashkin, A., Dziedzic, J. M., and Yamane, T. “Optical Trapping and Manipulation of Single Cells Using Infrared-Laser Beams” Nature, vol. 330, no. 6150, pp. 769-771, 1987.
    [4] Ashkin, A., and Dziedzic, J. M. “Optical Trapping and Manipulation of Single Living Cells Using Infrared-Laser Beams.” Berichte Der Bunsen-Gesellschaft- Physical Chemistry Chemical Physics, vol. 93, no. 3, pp. 254-260, 1989.
    [5] Yafouz, B., Kadri, N. A., and Ibrahim, F. “Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes.” Sensors, vol. 14, no. 4, pp. 6356-6369, 2014.
    [6] Yan, S., Zhang, J., Li, M., Alici, G., Du, H. P., Sluyter, R., and Li, W. H. “On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser.” Scientific Reports, vol. 4, 2014.
    [7] Chiou, P. Y., Ohta, A. T., and Wu, M. C.” Massively parallel manipulation of single cells and microparticles using optical images. “Nature, vol. 436, no.7049, pp. 370-372, 2005.
    [8] Yang, S. M., Tseng, S. Y., Chen, H. P., Hsu, L., and Liu, C. H. “Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.” Lab on a Chip, vol. 13, no. 19, pp. 3893-3902, 2013.
    [9] Williams, S. J., Kumar, A., and Wereley, S. T. “Electrokinetic patterning of colloidal particles with optical landscapes.” Lab on a Chip, vol. 8, no. 11, pp. 1879-1882, 2008.
    [10] Wang, K. C., Kumar, A., Williams, S. J., Green, N. G., Kim, K. C., and Chuang, H. S. “An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement.” Lab on a Chip, vol. 14, no. 20, pp. 3958-67, 2014.
    [11] Kwon, J. S., and Wereley, S. T. “Towards New Methodologies for Manipulation of Colloidal Particles in a Miniaturized Fluidic Device: Optoelectrokinetic Manipulation Technique.” Journal of Fluids Engineering-Transactions of the Asme, vol. 135, no. 2, 2013.
    [12] Velasco, V., and Williams, S. J. “Electrokinetic concentration, patterning, and sorting of colloids with thin film heaters.” Journal of Colloid and Interface Science, vol. 394, pp. 598-603, 2013.
    [13] Williams, S. J., Kumar, A., Green, N. G., Wereley, S. T. “Optically induced electrokinetic concentration and sorting of colloids.” Journal of Micromechanics and Microengineering, vol. 20, no. 1, 2010.
    [14] Ristenpart, W. D., Aksay, I. A., and Saville, D. A. “Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential.” Journal of Fluid Mechanics, vol. 575, pp. 83-109, 2007.
    [15] Mavrogiannis, N., Desmond, M., and Gagnon, Z. R. “Fluidic dielectrophoresis: The polarization and displacement of electrical liquid interfaces.” Electrophoresis, vol. 36, no. 13, pp. 1386-1395, 2015.
    [16] Wang, J. C., Ku, H. Y., Chen, T. S., and Chuang, H. S. “Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing.” Biosensors and Bioelectronics, vol. 89, no. 2, pp. 701-709, 2017.
    [17] Li, Y. J., Bi, L. J., Zhang, X. E., Zhou, Y. F., Zhang, J. B., Chen, Y. Y., Li, W., and Zhang, Z. P. “Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip.” Analytical and Bioanalytical Chemistry, vol. 386, no. 5, pp. 1321-1326, 2006.
    [18] Jha, R. K., Gaiotto, T., Bradbury, A. R. M., and Strauss, C. E. M. “An improved Protein G with higher affinity for human/rabbit IgG Fc domains exploiting a computationally designed polar network.” Protein Engineering Design & Selection, vol. 27, no. 4, pp. 127-134, 2014.
    [19] Pochechueva, T., Chinarev, A., Bovin, N., Fedier, A., Jacob, F., and Heinzelmann-Schwarz, V. “PEGylation of microbead surfaces reduces unspecific antibody binding in glycan-based suspension array.” Journal of Immunological Methods, vol. 412, pp. 42-52, 2014.
    [20] Staros, J. V., Wright, R. W., and Swingle, D. M. “Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions.” Analytical Biochemistry, vol. 156, no. 1, pp. 220-222, 1986.
    [21] “Separation and purification of hepatitis B antigens using a zonal rotor.” Himac Application, no.130, 2008.
    [22] Block, T. M., Guo, H., Guo, and J. T.“Molecular virology of hepatitis B virus for clinicians.” Clinics Liver Disease, vol. 11, no. 4, pp. 685-706, 2007.
    [23] J. L. Dienstag “Hepatitis B virus infection” The New England Journal of Medicine, vol. 359, pp. 1486-1500, 2008.
    [24] McMinn, P., Lindsay, K., Perera, D., Chan, H. M., Chan, K. P., and Cardosa, M. J. “Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia.” Journal of Virology, vol. 75, no. 16, pp. 7732-7738, 2001.
    [25] Tan, Y. C. and Lee, A. P. “Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.” Lab on a Chip, vol. 5, no. 10, pp. 1178-1183, 2005.
    [26] Zhao, Y. J., Yi, U. C., and Cho, S. K. “Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics.” Journal of Microelectromechanical Systems, vol. 16, no. 6, pp. 1472-1481, 2007.
    [27] Fan, S. K. and Wang, F. M. “Multiphase optofluidics on an electro-microfluidic platform powered by electrowetting and dielectrophoresis.” Lab on a Chip, vol. 14, no. 15, pp. 2828-2738, 2014.
    [28] Nelson, W. C. and Kim, C. J. “ Droplet Actuation by Electrowetting-on -Dielectric (EWOD): A Review.” Journal of Adhesion Science and Technology, vol. 26, no. 12-17, pp. 1747-1771, 2012.
    [29] Yamayoshi, S., Ohka, S., Fujii, K., and Koike, S. “Functional Comparison of SCARB2 and PSGL1 as Receptors for Enterovirus 71.” Journal of Virology, vol. 87, no. 6, pp. 3335-3347, 2013.
    [30] Grabarek, Z. and Gergely, J. “Zero-length crosslinking procedure with the use of active esters.” Analytical Biochemistry, vol. 158, no.1, pp. 131-135, 1990.
    [31] Fischer, M. J. “Amine coupling through EDC/NHS: a practical approach.” Methods in Molecular Biology, vol. 627, pp. 55-73, 2010.
    [32] Lipman, N. S., Jackson, L. R., Trudel, L. J., and Weis-Garcia, F. “Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources.” Institute for Laboratory Animal Research Journal, vol. 46, no.3, pp. 258-268, 2005.
    [33] Patient, R., Hourioux, C., Sizaret, P. Y., Trassard, S., Sureau, C., and Roingeard, P. “ Hepatitis B virus subviral envelope particle morphogenesis and intracellular trafficking.” Journal of Virology, vol. 81, no. 8, pp. 3842-3851, 2007.
    [34] Musa, B. M., Bussell, S., Borodo, M. M., Samaila, A. A., and Femi, O. L. “Prevalence of hepatitis B virus infection in Nigeria, 2000-2013: A systematic review and meta-analysis.” Nigerian Journal of Clinical Practice, vol. 18, no. 2, pp. 163-172, 2015.
    [35] Kaito, M., Ishida, S., Tanaka, H., Horiike, S., Fujita, N., Adachi, Y., Kohara, M., Konishi, M., and Watanabe, S. “Morphology of hepatitis C and hepatitis B virus particles as detected by immunogold electron microscopy.” Medical Molecular Morphology, vol.39, no. 2, pp. 63-71, 2006.
    [36] Kaito, M., Ohba, H., Chiba, J., Kohara, M., Tanaka, H., Fujita, N., Gabazza, E. C., Watanabe, S., Konishi, M., and Adachi, Y. “The ultrastructural morphology of native hepatitis B virus.” Medical Molecular Morpholog, vol. 39, no. 3, pp. 136-145, 2006.
    [37] Liu, C. C., Guo, M. S., Lin, F. H., Hsiao, K. N., Chang, K. H., Chou, A. H., Wang, Y. C., Chen, Y. C., Yang, C. S., and Chong, P. C. “Purification and characterization of enterovirus 71 viral particles produced from vero cells grown in a serum-free microcarrier bioreactor system.” PLoS One, vol. 6, no. 5, 2011.
    [38] Kumar, A., Kwon, J. S., Williams, S. J., Green, N. G., Yip, N. K., and Wereley, S. T. “Optically Modulated Electrokinetic Manipulation and Concentration of Colloidal Particles near an Electrode Surface.” Langmuir, vol. 26, no.7, pp. 5262-5272, 2010.

    下載圖示 校內:2020-02-15公開
    校外:2020-02-15公開
    QR CODE