簡易檢索 / 詳目顯示

研究生: 黃偉誠
Huang, Wei-Cheng
論文名稱: 利用分散粒子動力學分析DNA修飾金奈米粒子之自組裝現象
Study on Self-Assembly Behavior of Modified Gold Nanoparticles with Oligonucleotides by Using Dissipative Particle Dynamics (DPD)
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 分散粒子動力學DNA修飾金奈米粒子聚集團簇
外文關鍵詞: Dissipative Particle Dynamics(DPD), modified gold nanoparticles with oligonucleotides, cluster aggregation.
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分散粒子動力學法研究DNA修飾金奈米粒子之自我組裝象,並在模擬過程中分析適當模擬盒大小、不同形貌下的DNA-AuNPs聚集形態效應,以及利用不同DNA鏈長,所產生的團簇大小及形貌變化。由模擬結果顯示,不同形貌DNA-AuNPs的平均聚集數會隨著嫁接在金奈米粒子上的DNA spacer是否完整延展而改變大小;當相互雜交的粒子數所佔的體積分率愈接近 1:1,其平均聚集數也將會大幅增加。將DNA鏈長增長,使得DNA鏈長與金奈米粒徑的比值變大,平均聚集數卻沒有線性成長,模擬當中發現DNA鏈長增為15-mer時,DNA spacer卻因撓度過高,而在尾端產生纏繞現象,無法有效雜交。由迴旋半徑與偏球率則觀察到,隨著DNA鏈長的增加,會使整體團簇結構由橢圓狀轉為類球狀。

    In this paper, self-assembly behavior of modified gold nanoparticles with oligonucleotides was studied by using dissipative particle dynamics(DPD) . During the simulation, the influence of the appropriate size of simulation box, the aggregation of different morphology of the DNA-AuNPs and the different length of DNA chain on the resulting cluster size and the change of morphology was investigated individually. The results showed that the mean aggregation number change of the the DNA-AuNPs of different morphologies with the DNA spacer, completely grafted on gold nanoparticles is dependent upon whether the chain is perfectly extended or not.When the volume fraction of beads of hybridization is close to fifty-fifty, the mean aggregation number will increased dramatically. As the DNA chain was enlarged, the ratio of the DNA chain and the diameter of AuNPs increased, while the mean aggregation number does not increase linearly.Moreover, as the oligonucleotide numbers is increased to 15-mer, attributed to the soft flexibility of DNA spacer, the DNA spacer exhibited tangling phenomenon with inefficient hybridization. It was found that as the DNA chain length increased, the overall cluster structure will transforme from ellipsoid-like to spheroid-like by using radius of gyration and asphericity.

    目錄 摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 ix 圖目錄 xi 符號說明 xvi 第一章 緒論…………………………………………………………………1 1-1 金奈米粒子性質 …………………………………………………1 1-2 金奈米粒子與表面電漿共振 ……………………………………1 1-3 利用金奈米粒子在生物檢測及分析上應用 ……………………4 1-4 文獻回顧 …………………………………………………………8 1-4-1 Nanoparticle scaffolds …………………………………8 1-4-2 Simulation on DNA-AuNPs ………………………………15 1-5 研究動機與目的…………………………………………………17 1-6 本文架構…………………………………………………………18 第二章 模擬原理與方法 ………………………………………………19 2-1 分散粒子動力學簡介 ……………………………………………19 2-2 分散粒子動力學原理 ……………………………………………21 2-2-1 勢能函數 …………………………………………………24 2-2-2 分散動力學的無因次化 ………………………………25 2-2-3 粒子的軌跡積分方法 …………………………………27 2-2-4 噪訊參數的選擇 …………………………………………29 2-2-5 斥力參數的選擇 ………………………………………30 2-2-6 利用分子動力學求得DPD斥力參數 ……………………32 2-2-7 DPD對應Flory-Huggins theory ………………………33 2-3 模擬技巧與方法………………………………………………37 2-3-1 截斷半徑與鄰近表列法 …………………………………37 2-3-2 Verlet表列法 …………………………………………38 2-3-3 Cell link 表列法 ………………………………………40 2-3-4 Verlet 結合Cell link表列法 ………………………41 2-3-5 週期邊界 …………………………………………………42 2-3-6 最小映像法則 ……………………………………………43 第三章 模擬分析理論……………………………………………………45 3-1位置秩序參數 ……………………………………………………45 3-2 平均聚集數分析 ………………………………………………46 3-3 徑向分佈函數……………………………………………………48 3-4 迴旋半徑 ………………………………………………………51 3-5 偏球率 …………………………………………………………52 第四章 結果與討論 …………………………………………………… 53 4-1 物理模型設定……………………………………………………53 4-1-1模型配置 …………………………………………………58 4-1-2參數設定 …………………………………………………60 4-2 監控系統平衡狀態 …………………………………………… 66 4-3 模擬盒大小之選擇 …………………………………………… 67 4-4 AuNPs morphology …………………………………………… 69 4-4-1平均聚集數效應 …………………………………………70 4-4-2 RDF分析 …………………………………………………72 4-5 鏈長效應 ………………………………………………………75 4-5-1平均聚集數效應 …………………………………………76 4-5-2 RDF分析 …………………………………………………78 4-5-3 Rg與asphericity ………………………………………80 4-5 體積分率效應……………………………………………………82 4-5-1 平均聚集數分析 …………………………………………82 第五章 結論與未來展望 ………………………………………………85 5-1結論 ……………………………………………………………85 5-2未來展望 …………………………………………………………87 參考文獻……………………………………………………………………88

    參考文獻
    [1] O. Lioubashevski, V. I. Chegel, F. Patolsky, E. Katz and I. Willner “A Surface Plasmon Resonance and Electrochemical Study”, J. Am. Chem. Soc., Vol. 126, No. 22, pp. 7133-7143, 2004.
    [2] H. Han, Y. Fang, Z. Li and H. Xu ,“Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation” Appl. Phys. Lett., Vol. 92, 2008.
    [3] X. Huang, P. K. Jain, I.H. El-Sayed and M.A. El-Sayed“Plasmonic photothermal therapy using gold nanoparticles”, Lasers Med. Sci., Vol. 23, pp. 217-228, 2008.
    [4] A. C. Arsenault, Nanochemistry “A Chemical Approach to Nanomaterials”, Royal Society of Chemistry, Cambridge, UK, 2005.
    [5] C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, “ A DNA-based method for rationally assembling nanoparticles into macroscopic materials”, Nature, Vol. 382, pp. 607–609, 1996.
    [6] A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. G. Loweth, M. P. Bruchez and P. G. Schultz,“Organization of nanocrystal molecules’using DNA”, Nature, Vol. 382, pp. 609-611, 1996.
    [7] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and C. A. Mirkin,“Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles”, Science, Vol. 277, pp. 1078, 1997.
    [8] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, “ One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes” J. Am. Chem. Soc., Vol. 120, pp. 1959-1964, 1998.
    [9] R. A. Reynolds, C. A. Mirkin, R. L. Letsinger, “Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides”, J. Am. Chem. Soc., Vol. 122, Issue. 15, pp. 3795-3796, 2000.
    [10] R. C. Jin, G. Wu, Z. Li, C. A. Mirkin, G. C. Schatz,“ What controls the melting properties of DNA-linked gold nanoparticle assemblies?”, J. Am. Chem. Soc., Vol. 125, Issue. 6, pp. 1643-1654, 2003.
    [11] D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich and C. A. Mirkin,“Nano-flares:Probes :for transfection and mRNA detection in living cells”, J. Am. Chem. Soc., Vol. 129, pp. 15477–15479, 2007.
    [12] U. Drechsler, B. Erdogan, and V. M. Rotello, “Nanoparticles: Scaffolds for Molecular Recognition”, Chem. Eur. J., Vol. 10, pp. 5570-5579, 2004.
    [13] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticlesSelective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles”, Science , Vol. 277, Issue. 5329, pp. 1078–1081, 1997.
    [14] S. Mann, W. Shenton, M. Li, S. Connolly, D. Fitzmaurice,“Biologically programmed nanoparticle assembly”, Adv. Mater, Vol. 12, Issue. 2, pp. 147–150, 2000.
    [15] M. G. Warner and J. E. Hutchison,“Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds”, Nature materials, Vol. 2, pp. 272-277, 2003.
    [16] N. A. Licata, and A. V. Tkachenko,“How to build nanoblocks using DNA scaffolds”, EPL., Vol. 84, 2008.
    [17] C. Lin, Y. Liu, and H. Yan,“Designer DNA Nanoarchitectures”, American Chemical Society, Vol. 48, Number 8, 2009.
    [18] C. Lin, Y. Liu, S. Rinker, and H. Yan,“DNA Tile Based Self-Assembly:Building Complex Nanoarchitectures”, Chem.Phys.Chem, Vol. 7, pp. 1641–1647, 2006.
    [19] P. L. Biancaniello, A. J. Kim, and J. C. Crocker,“Colloidal Interactions and Self-Assembly Using DNA Hybridization” Phys. Rev. Lett., Vol. 94, Number. 058302 , 2005.
    [20] S. J. Park, A. A. Lazarides, C. A. Mirkin, and R. L. Letsinger ,and Robert L. Letsinger, “Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks”, Angew. Chem. Int. Ed., Vol. 40 , Issue. 15, pp. 2909-2912, 2001.
    [21] S. Y. Park and D. Stroud,“Theory of melting and the optical properties of gold on DNA nanocomposites”, Phys. Rev. B, Vol. 67, Number. 212202, 2003.
    [22] S. Y. Park and D. Stroud,“Structure formation, melting, and optical properties of gold on DNA nanocomposites: Effects of relaxation time”, Phys. Rev. B, Vol. 68, Number. 224201, 2003.
    [23] D. Nykypanchuk, M. M. Maye, D. van der Lelie, and Oleg Gang,“DNA-Based Approach for Interparticle Interaction Control”, Langmuir, Vol. 23, pp. 6305-6314, 2007.
    [24] A. J. Kim, P. L. Biancaniello, and John C. Crocker,“Engineering DNA-Mediated Colloidal Crystallization”, Langmuir , Vol. 22, pp. 1991-2001,2006.
    [25] S. J. Hurst, A. K. R. Lytton-Jean, and C. A. Mirkin, “Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes”, Anal. Chem., Vol. 78, pp. 8313-8318, 2006.
    [26] X. Xu, N. L. Rosi, Y. Wang, F. Huo, and C. A. Mirkin,“Asymmetric Functionalization of Gold Nanoparticles with Oligonucleotides”, J. Am. Chem. Soc., Vol. 128, NO. 29, pp. 9287, 2006.
    [27] B. F. Huo, A. K. R. Lytton-Jean, and C. A. Mirkin,“Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects”, Adv. Mater, Vol. 18, pp. 2304–2306, 2006.
    [28] H. Xiong, D. van der Lelie and O. Gang, “Phase Behavior of Nanoparticles Assembled by DNA Linkers”, PRL, Vol. 102, Number. 015504 ,2009.
    [29] H. D. Hill, R. J. Macfarlane, A. J. Senesi, B. Lee, S. Y. Park, and C. A. Mirkin, “Controlling the Lattice Parameters of Gold Nanoparticle FCC Crystals with Duplex DNA Linkers”, Nano Lett., Vol. 8, No. 8, pp. 2341-2344, 2008.
    [30] K. Suzuki, K. Hosokawa, and M. Maeda, “Controlling the Number and Positions of Oligonucleotides on Gold Nanoparticle Surfaces”, J. Am. Chem. Soc., Vol. 131, No. 22, 2009.
    [31] J. Robert, F. Macfarlane, “Diffusion of innovations in service organizations: Systematic review and recommendations”, MILBANK QUARTERLY, Vol. 81, Issue. 4, pp. 581-629, 2004.
    [32] O. S. Lee and G. C. Schatz, “Molecular Dynamics Simulation of DNA-Functionalized Gold Nanoparticles”, J. Phys. Chem. C., Vol. 113, pp. 2316–2321, 2009.
    [33] S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S Weigand, G. C. Schatz, C. A. Mirkin, “DNA-programmable nanoparticle crystallization”, Nature Letters, Vol. 451, pp. 553-556, 2008.
    [34] S. C. C. Juan, C. Y. Hua, C. L. Chen, X. Sun, and H. Xi, “Dissipative particle dynamics simulation of a gold nanoparticle system”, Molecular Simulation, Vol. 31, No. 4, pp. 277–282, 2005.
    [35] P. J. Hoogerbrugge, and J. M. V. A. Koelman,“ Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics”, Europhys. Lett., Vol. 19, No. 155 , 1992.
    [36] R. D. Groot and P. B. Warren, “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation", Chem. Phys., Vol. 107, No. 11, 1997.
    [37] R. D. Groot and T. J. Madden, “Dynamic simulation of diblock copolymer microphase separation”, J. Chem. Phys., Vol. 108, pp. 8713-8724, 1998.
    [38] P. Espagnol, P. Warren,“tatistical Mechanics of Dissipative Particle Dynamics", Europhys Lett., Vol. 30, pp. 191-196, 1995.
    [39] D. Frenkel and B. Smit, “Understanding Molecular Simulation from Algorithms to Application”, Academic Press , 2002.
    [40] R. D. Groot and P. B. Warren ,“ Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation“, J. Chem. Phys., Vol. 107 , Issue. 11, pp. 4423-4435, 1997.
    [41] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.
    [42] R. D. Groot, “Applications of Dissipative Particle Dynamics“, Lect. Notes Phys., 640, 5, 2004.
    [43] M. Mitesh and M. Simon, “Bead–bead interaction parameters in dissipative particle dynamics:Relation to bead-size,solubility parameter, and surface tension ", J. Chem. Phys., Vol. 120, Number 3, 2003.
    [44] H. Hildebrand and R. L. Scott, The Solubility of Non-Electrolytes Re-inhold, New York, 1949.
    [45] F. Case and J. D. Honeycutt, “ Will My Polymers Mix? Methods for Studying Polymer Miscibility”, Trends Polym. Sci. 2, pp. 259-266, 1994.
    [46] L. Verlet, “Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Moleculars ”, Phys. Rev., Vol. 159, No. 98, 1967.
    [47] Y. J. Sheng, T. Y. Wang, W. M. Chen., H. K. Tsao ,“A-B Diblock Copolymer Micells : Effects of Soluble-Block Length and Component Compatibility” , J. Phys. Chem. B., Vol. 111, pp. 10938-10945, 2007.
    [48] J. M. Hailie, Molecular Dynamics Simulation Elementary Method, New York: John Wiley & Sons. Inc., 1993.
    [49] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford, Science: London, 1991.
    [50] J. Rudnickt and G. GaspariS, “The asphericity of random walks”, J. Phys. A: Math. Gen. Vol. 19, L191-L193, 1986.

    無法下載圖示 校內:2015-07-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE