| 研究生: |
張曼蘋 Chang, Man-Ping |
|---|---|
| 論文名稱: |
碳化鎢 / 氧化鋁奈米複合材料之製備及其微結構與機械性質之研究 Preparation of Tungsten Carbide / Aluminum Oxide Nanocomposites and Investigation on Microstructure and Mechanical Properties |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 奈米複合材料 、氧化鋁 、碳化鎢 、火花電漿燒結 |
| 外文關鍵詞: | Nanocomposite, Alumina, Tungsten carbide, Spark Plasma Sintering |
| 相關次數: | 點閱:79 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用有機金屬化學氣相沉積法 ( MOCVD ) 配合噴流床 ( Spouted Bed ) 技術,將前驅物羰化鎢 ( W(CO)6 ) 裂解,並將裂解所得到的非晶質氧化鎢,經由甲烷-氫氣之混合氣體進行碳化熱處理,探討碳化熱處理過程中之相轉換機制,可知其相轉換過程為WO3 -> WC1-x ->W2C -> WC。另外找出最佳碳化處理的溫度和時間,進而製備出碳化鎢 / 氧化鋁 ( WC / Al2O3 ) 奈米複合粉末。
將WC / Al2O3奈米複合粉末以火花電漿燒結法 ( Spark Plasma Sintering ) 燒結,分別在1250 oC至1450 oC五個溫度下形成WC / Al2O3奈米複合燒結體,當燒結溫度到達1400 oC時燒結體最為緻密。由STEM和TEM觀察,證實第二相奈米級的碳化鎢均勻的分布在基材氧化鋁的晶界上和晶粒內部,是屬於晶內和晶界型的奈米複合材料。另外燒結體的破斷面觀察到沿晶破壞與穿晶破壞,可知複合材料的韌性與強度均比單質氧化鋁高。由維式硬度與破壞韌性的測試結果發現,WC / Al2O3奈米複合燒結體之維式硬度可提升至33.2 GPa,破壞韌性值則可提升至5.79 MPa.m1/2,顯示第二相碳化鎢達到強化與韌化的效果。
Tungsten carbide was prepared by metal-organic chemical vapor deposition ( MOCVD ) method in a spouted bed and carbonized in the mixture of CH4 / H2 atmosphere in temperature range 700 - 900 oC. The phase transformation mechanism of carbonized heat treatment process is WO3 -> WC1-x -> W2C -> WC. Then identified the appropriated carbonized temperature and holding periods, and prepared the tungsten carbide / aluminum oxide ( WC / Al2O3 ) nano-composite powders.
WC / Al2O3 nanocomposites powder was sintered by SPS ( Spark Plasma Sintering ) at 1250 oC - 1450 oC. The successful densification of WC / Al2O3 nanocomposites were obtained at 1400 oC. STEM and TEM images confirmed that the WC / Al2O3 nanocomposites were inter / intra granular nanocomposites, which tungsten carbide were evenly distributed in the grain boundaries and inside the grains of alumina. The fracture modes of the WC / Al2O3 nanocomposites were intergranular fracture and transgranular fracture. From the Vickers hardness and fracture toughness test results, showing that WC / Al2O3 nanocomposite Vickers hardness is 33.2 GPa, and fracture toughness is 5.79 MPa‧m1/2. Confirmed that tungsten carbide improved the mechanical properties of nanocomposites.
[1] S. Lio, M. Watanabe, M. Matsubara, and Y. Matsuo (1989), “Mechanical properties of alumina/ silicon carbide whisker composites,” J. Am. Ceram. Soc., 72 (10), p1880.
[2] W.J. Tseng and P.D. Funkenbusch (1992), “Microstructure and
densification of pressureless-sintered Al2O3/Si3N4,” J. Am. Ceram. Soc., 75 (5), p1171.
[3] Y.S. Chou, and D.J. Green (1992), “Silicon carbide platelet / alumina composites: I. effect of forming technique on platelet orientation,” J. Am. Ceram. Soc., 75 (12), p3346.
[4] 陶瓷技術手冊 (下) (1994),經濟部技術處。
[5] K. Niihara (1991). “New design concept of structural ceramics-ceramic nanocomposites,” J. Ceram. Soc. Jpn., 99, p974.
[6] W. Acchar, A.E. Martinelli, F.A. Vieira, and C.A.A. Cairo (2000), “Sintering behaviour of alumina–tungsten carbide composites,” Mater. Sci. Eng., A, 284, p84–87.
[7] G. Y. Onada, Jr, and L.L. Hench. (1978), Ceramic processing before firing, Wiley: New York, p357-376.
[8] E.A. Pugar and P.E.D. Morgan (1984), “Coupled Grain Growth Effects in Al2O3/ 10 vol% ZrO2,” J. Am. Ceram. Soc., 69, pC120.
[9] S. Morooka, A. Kobata, and K. Kusakabe (1991),”Rate analysis of composite ceramic particles production by CVD reactions in a fluidized bed,”AICHE Symp., Ser., 87, p32-37.
[10] K. Tsugeki, T. Kato, Y. Koyanagi, K. Kusakabe, and S.Morooka (1993), “Electconductivity of sintered bodies of α-Al2O3-TiN composite prepared by CVD reaction in a fluidized bed,” J. Mater. Sci., 28, p3168.
[11] B.J. Wood, A. Sanjurjo, G.T. Tong, and S.E. Swider (1991), ” Coating particles by chemical vapor deposition in fluidized bed reactors,” Sur. Coat. Tech., 49, p228.
[12] T. Ohji, Y.K. Jeong, Y.H. Choa, and K. Niihara (1998), “Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,” J. Am. Ceram. Soc., 81, p1453.
[13] T. Ohji, Y.K. Jeong, T. Hirano, A. Nakahira and K. Niihara (1996), “Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites,” J. Am. Ceram. Soc., 79, p33.
[14] B. Basu, T. Venkateswaran, and D. Y. Kim (2006), “Microstructure and Properties of Spark Plasma-Sintering ZrO2-ZrB2 Nanoceramic Composites,” J. Am. Ceram. Soc., 89, p2405.
[15] C. Z (1948), “Grains, phases, and interfaces: an interpretation of microstructure,” Trans. Am. Inst. Min. Metall. Eng., 175, p15.
[16] N. J. Petch (1953), “Cleavage strength of polycrystals,” J. Iron and Steel Inst., 174, p25.
[17] S.M. Choi and H. Awaji (2005), “Nanocomposites-a new material design concept,” Sci. Tech. Adv. Mat., 6, p2.
[18] 王世敏、許祖勛、傅晶 (2001),奈米材料製備技術,化學工業出版社,北京。
[19] K.T. Faber and A.G. Evans (1983), “Crack deflection process-I. theory,” Acta Metall., 31, p565.
[20] K.T. Faber and AG..Evans (1983), “Crack deflection process-II. Theory,” Acta Metall., 31, p577.
[21] A.G. Evans (1972), “The strength of brittle materials containing second phase dispersions,” Philos. Mag., 26. p1327.
[22] A.G. Evans and K.T. Faber (1984), “Crack-growth resistance of microcracking brittle materials,” J. Am. Ceam. Soc., 69, p255.
[23] K. Tsugeki, T. Kato, Y. Koyanagi, K. Kusakabe, and S. Morooka (1993), “Electconductivity of sintered bodies of α-Al2O3-TiN composite prepared by CVD reaction in a fluidized bed,” J. Mater. Sci., 28, p3168.
[24] B. Hua, and C. Li (1999), “Production and characterization of nanocrystalline SnO2 films on Al2O3 agglomerates by CVD in a fluidized bed,” Mat. Chem. Phy., 59, p130.
[25] D. Kunii and O. Levenspiel (1997), “Transient heat transfer during heating of spherical particles in a fluidized bed,” Fluidization engineering, Huntington, N.Y, p195-223.
[26] 錢建嵩 (1992),流體化床技術,高立圖書有限公司。
[28] W. Hieber, E. Romberg, and Z. Anorg (1935), “Über Metallcarbonyle,” Allg. Chem., 221, p332.
[29] M.H. Lo and W.C. J. Wei (1997),”Analysis of (Cr, Mo) oxycarbide films grown on stainless steel via metalloorganic chemical vapor deposition,” J. Am. Ceram. Soc., 80, p886.
[30] C.J. Lin, C.C. Yang and W.C. J. Wei (1999) “Processing and microstructure of nano-Mo/Al2O3 composites from MOCVD and fluidized bed,” Nanostruct. Mater., 11, p1361.
[31] K. Madhav Reddy, T.N. Rao, and J. Joardar (2001), " Stability of nanostructuredW-C phases during carburization of WO3," Mater. Chem. Phys., 128, p121-126.
[32] A. Kumar, K. Singh, and O.P. Pandey (2009), "Reduction of WO3 to nano-WC by thermo-chemical reaction route," Physica E, 41, p677–684.
[33] M. Tokia, “Mechanism of Spark Plasma Sintering,” Sumitomo Coal Mining Company, Ltd., East Bldg. 108, Kanagawa Science Park KSP.
[34] M. Tokia (1993), “Trends in Advanced SPS Spark Plasma Sintering Systems and Technology,” J.Soc. Pow. Tech. Jap., 30, p790.
[35] M. N. Alam, M. Blackman, and D. W. Pashley (1954), “High-Angle Kikuchi Patterns,” Proc. R. Soc. Lond. A, 221,p 224-242.
[36] J. A. Venables and C. J. Harland (1972), "Electron back-scattering patterns-A new technique for obtaining crystallographic information in the scanning electron microscope," Philos. Mag., 27, p1193-1200.
[37] 陳志慶 (2012), 「背向散射電子繞射技術的空間及角解析度之探討」,國立成功大學材料科學及工程研究所博士論文。
[38] D. Zhang, L. Zhang, J. Guo, and W.H. Tuan (2006), “Direct evidence on temperature variation whthin ceramic powder compacts during pulse electric current sintering,” J. Am. Ceram. Soc., 89, p689.
[39] X. Wang, S.R. Casolco, G. Xu, and J.E. Garay (2007), “Finite element modeling of electric current-activated sintering:The effect of coupled electrical potential temperature and stress,” Acta Mater., 55, p3611.
[40] A.G. Evans (1976), “Fracture toughness determination by indentation,” J. Am. Ceram. Soc., 59, p371.
[41] T. Isobe, K. Daimon, T. Sato, T. Matsubara, Y. Hikichi, and T. Ota (2008), “Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties,” Ceram. Int., 34, p213.
[42] D. Gogova, K. Gesheva, A. Veneva (1998), “CVD–WC and WCxNy diffusion barrier coatings on WC/Co metalloceramics,” Mater. Lett., 35(5–6), p351-356.
[43] V. Kumar, Z. Zakfang, S.I. Wright, and M.M. Nowell (2006), "An analysis of grain boundaries and grain growth in cemented tungsten carbide using orientation imaging microscopy," Metall. Mater. Trans. A , 37(3) , p599-607.
[44] D. Harbec, J.L. Meunier (2011), "Growth of carbon nanotubes above the peritectic temperature of tungsten metal catalyst," CARBON, 49, p2206-2215.
[45] P. Gustafson (1986), “Thermodynamic Properties of the Co-W-C System," Mater. Sci. Technol, 2, p653.
[46] Wright, S. I., and Nowell, M. M. (2006). “EBSD image quality mapping. Microscopy Microanalysis,” Microsc. Microanal.,12, p72-84.
[47] 劉柏宗 (2010),「利用噴流床製備碳化鉻/氧化鋁奈米複合材料及火花電漿燒結體之微結構與機械性質研究」,國立成功大學材料科學及工程研究所碩士論文。
[48] J. Liu and P. Darrell Qwnby (1991), "Boron Carbide Reinforced Alumina Composites," J.Am Ceram. Soc., 74, p674.
校內:2017-08-01公開