| 研究生: |
林裕川 Lin, Yu-Chuan |
|---|---|
| 論文名稱: |
以反應蒸餾法製備醚類汽油添加劑I.醚類前驅物2-甲基-2-丁醇之合成 Preparation of Ethers as Fuel Additives by Reactive Distillation I.Synthesis of 2-methyl-2-butanal as a precursor of Ethers |
| 指導教授: |
翁鴻山
Weng, Hung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 2-甲基-2-丁醇 、醚類汽油添加劑 、反應蒸餾 |
| 外文關鍵詞: | TAEE |
| 相關次數: | 點閱:79 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文主要目的為探討利用催化蒸餾技術由具支鏈五碳烯合成醚類汽油添加劑乙基異戊基醚(TAEE)之前驅步驟—由具支鏈五碳烯經水合反應製備具支鏈的五碳醇。首先我們進行確定反應原料以及是否添加反應誘發物之實驗。以兩種皆具有支鏈的五碳烯—異戊二烯(isoprene)及2-甲基-2-丁烯(2-methyl-2-butene, 2M2B)為原料進行反應,確定前者無法合成醇化合物,而後者則可合成2-甲基-2-丁醇(tert-amyl alcohol, TAA),且在反應初期,必須添加少量的反應誘發物,水合反應才會發生。此外為促進反應速率,我們分別以硫酸、陽離子交換型樹脂Amberlyst-15及Amberlyst-31等酸性觸媒進行實驗,確定在相同條件下,以添加Amberlyst-15的反應速率最快。
接著進行2-甲基-2-丁烯水合反應之動力學探討,分成正向反應與逆向反應兩方面進行。首先得到正向反應之反應階次對水及2-甲基-2-丁烯皆為一次,逆向反應之反應階次對2-甲基-2-丁醇為一次。即2-甲基-2-丁烯之水合反應速率可用下式表示:
- r 2M2B = k1[2M2B][H2O] – k2[TAA]
我們也以初始速率法及積分法求取在70oC下該反應之動力學參數﹔以初始速率法所得之正向反應速率常數為0.0056 L/mole-min,逆向反應速率常數為0.037 min-1﹔以積分法所得之正向反應速率常數為0.0068 L/mole-min,逆向反應速率常數為0.072 min-1,平衡常數為0.36 L/mole。最後再以積分法重新驗證我們所求出的反應模式。在進行逆向反應實驗中,我們發現: 大量的2-甲基-2-丁醇不但會進行脫水反應生成2-甲基-2-丁烯與2-甲基-1-丁烯,還會發生自醚化生成二異戊基醚(diisoamyl ether)。
此外,我們也對於觸媒用量,攪拌速率,溫度效應,以及觸媒重複使用等對反應的影響予以探討。在反應液體體積為668ml(550ml丙酮,70ml 2-甲基-2-丁烯,20ml 去離子水,20ml正庚烷,8ml2-甲基-2-丁醇),反應溫度為70oC之情況下,當觸媒用量超過20克時,觸媒用量對正向反應之影響將逐漸減少﹔攪拌速率達到444rpm以上時,可以忽略外部質傳阻力對反應之影響。在不同反應溫度下,求出正向反應之速率常數,再利用阿瑞尼士圖(Arrhenius plot)求出正向反應之活化能為53.9 kJ / mole。我們發現觸媒可重複使用而活性不會衰減, 甚至2-甲基-2-丁醇之生成率有提高的現象。
最後我們也就第二階段由2-甲基-2-丁醇與乙醇經醚化反應合成TAEE作了初步實驗。我們分別以丙酮及乙醇本身作為溶劑進行反應,發現在這兩種不同的系統中,皆有疑似TAEE的產物出現,其中又以乙醇為溶劑時產生的量較多﹔然而以乙醇為溶劑時,乙醇有因自醚化反應生成二乙基醚(diethyl ether)的現象,詳細情形需留待後續研究者進一步探討。
Abstract
The purpose of this study is to explore the first step of synthesizing a fuel additive, tert-amyl ethyl ether (TAEE), from isoamylenes by catalytic distillation—preparation of isopentanol from isoamylene by hydration. At first, we tried to select a proper reactant as a raw material for synthesizing TAEE and to verify whether or not an inductor is required for the hydration reaction. Among two kinds of isoamylenes, isoprene and 2-methyl-2-butene (2M2B), we verified that the former can not convert to isopentanol whereas the latter can form tert-amyl alcohol (TAA). To ensure the processing of hydration, a little amount of TAA as an inductor must be added to the reaction system at the beginning. To accelerate the reaction rate, we used sulfuric acid and cation exchange resins, Amberlyst-15 and Amberlyst – 31, as the catalysts, and we found that the reaction rate was the highest as Amberlyst – 15 was employed.
Subsequently, we carried out a kinetic study on the hydration of 2-methyl-2-butene by investigating forward and reverse reactions separately. We found that this reversible reaction is first order with respect to both 2-methyl-2-butene and water in forward reaction and is first order with respect to tert-amyl alcohol in reverse reaction. Therefore, the rate equation can be expressed as :
-r 2M2B = k1 [2M2B][H2O] – k2 [TAA]
We use the initial-rate method and integral method to evaluate the kinetic parameters under 70oC. When the initial-rate method was employed, the forward reaction rate constant was found to be 0.0056 L/mole-min. and reverse reaction rate constant 0.037 min-1; When the integral method was applied, the forward reaction rate constant was calculated to be 0.068 L/mole-min., reverse reaction rate constant
0.072 min-1, and the equilibrium constant 0.36 L/mole. This kinetic model was checked by substituting two sets of experimental data into the equation derived by integral method. In the study on the reverse reaction, we found that a large amount of tert-amyl alcohol was converted 2-methyl-2-butene and 2-methyl-1-butene by dehydration, and was also transformed to diisoamyl ether by etherification.
In addition, we investigated the influences of catalyst weight, agitation speed, and temperature on the hydration reaction of 2-methyl-2-butene, and the reused of catalyst under the condition of reaction liquid volume of 668 ml (550 ml acetone, 20 ml n-heptane , 70 ml 2-methyl-2-butene, 20 ml ionic-free water, , 8 ml tert-amyl alcohol) at 70oC. Experimental results reveal that when the weight of catalyst is beyond 20 gram, the influence of catalyst weight becomes smaller on the forward reaction rate; when the agitation speed is above 444rpm, the influence of external mass transfer resistance can be neglected. By using the Arrhenius plot, we found that the activity energy of the forward reaction is 53.9 kJ/mole. We also found that the catalyst can be reused without activity decay, even the yield of tert-amyl alcohol is increased.
At last, we made an exploratory study on the second step – the etherification of tert-amyl alcohol and ethanol to TAEE. Two kinds of solvents, acetone and ethanol (also as reactant and solvent) were tested. In both systems, an unknown compound was produced, we can figure out that this product is TAEE. Comparing with acetone, the use of ethanol as the solvent resulted in a larger amount of the unknown product, however, it would cause the formation of diethyl ether. To understand more about the etherification reaction, further investigation should be executed in the future.
參考文獻
Ancillotti F., Maura M., Pescarollo E., J. Catal., 1977, 46, 49
Ancillotti F., Fattore V., Fuel Processing Technology, 1998, 57, 163
Chaplits, D. N., U.S. Patent 4, 1974, 012, 456
Damkohler, G., Chem. Ing. Tech. 1939, 12, 469
Delion A.,Torck B., Hellin M., J. Catal., 1987, 103, 177
Dudukovic M. P., Catal. Today, 1999, 48, 5
Gonzalez J. C., Fair J. R., Ind. Eng. Chem. Res., 1997, 36, 3833
Goto, S.; Chatani, T.; Matouq, M. H., J. Chem. Eng., 1993, 71, 821
Gotze L., Bailer O., Moritz P., Scala C., Catalysis Today, 2001, 69, 201
Hauan S., Hertzberg T., Lien K. M., Computers chem. Engng., 1997, 21, 1206
Hartley W. R., Englande A. J., Harrington D. J., Water Science Tech., 1999, 99, 305
Kitchaiya P., Datta R., Ind. Eng. Chem. Res., 1995, 34, 2013
Krause A. O. I., Hammarstrom L. G., Applied Catal., 1987, 30, 313
Kreul L. U., Gorak A., Dittrich C., Barton P. I., Computers chem. Engng., 1998, 22, 371
Lee Ming-Jer, Wu Hsien-Tsung, Lin Ho-mu, Ind. Eng. Chem. Res., 2000, 39, 4094
March, J., Advanced Organic Chemistry : Reactions, Mechanism, and Structure, 3rd ed., John Wiley & Sons, 1985, 2, 684
Matsuzawa, H., Ikeda, M., Sugimoto, Y., Uchida, S., U.S. Patent 4, 1975, 011, 272
Malone M. F., Doherty M. F., Ind. Eng. Chem. Res., 2000, 39, 3953
Mohl K. D., Kienle A., Gilles E. D., Chem. Eng. Sci., 1999, 54, 1029
Moy, D., Rakow, M. S., U.S. Patent 4, 1976, 096, 194
Nadim F., Zack P., George E. Hoag, Shili Liu, Energy Policy., 2001, 29, 1
National Reformulated Gasoline Hotline (NRGH), History and
Overview of the Reformulated Gasoline Program: A Brief Book for the Members of the Congress Of United States and Staff, 1999, 52
Odioso R. C., Henke M., Stauffer, H. C., Frech, K. J., Ind. Eng. Chem. 1961, 53 , 209
Okasinski, M. J., Doherty, M. F., Ind. Eng. Chem. Res. 1998, 37, 2821
Oudshoorn O.L., Janissen M., Kooten W.E.J., Jansen J.C., Bekkum H., Bleek C.M., Calis H.P.A., Chem. Eng. Sci., 1999, 54, 1413
Pecci G., Floris J. Hydrocarbon Processing, 1977, Dec., 98
Perez E., Schenk M., Gani R., Pilavachi P.A., Computers chem. Engng., 1996, 20, 267
Pescarollo E., Trotta R., Sarathy P.R., Clean Fuels Technology., 1993, Feb.
Prokop Z., Setinek K., Collect. Czech. Chem. Commun., 1987, 52, 1272
Rihko L. K., Krause A. O. I., Applied Catal. A, 1993,101, 283
Rihko L. K., Linnekoski J. A., Krause A. O. I., J. Chem. Eng., 1994, 39, 700
Sundmacher K., Uhde G., Hoffmann U., Chem. Eng. Sci., 1999, 54, 2839
Tade M. O., Tian Yu-Chu, Seperation and Purification Technology., 2000, 19, 85
Tuchlenski A., Beckmann A., Reusch D., Dussel R., Weidlich U., Janowsky R., Chem. Eng. Sci., 2001, 56, 387
Werner I., Koger C.S., Deanovic L.A., Hinton D.E., Enviromental
Pollution., 2001, 1, 83
Yang Bo-Lun, Yang San-Ba, Yao Rui-qing, Reactive and Functional Polymers., 2000, 44,167
張全勝, 觸媒與製程, 1994, 3, 54
翁鴻山, 工研院化工所主辦工業觸媒及活性碳應用人才訓練班講義, 2001