簡易檢索 / 詳目顯示

研究生: 許書倩
Hsu, Shu-Chien
論文名稱: 二氧化鈦奈米柱陣列-聚(3-己基噻吩)太陽能電池介面修飾之研究
Interfacial Modification of TiO2 Nanorod Array-P3HT Heterojunction Solar Cells
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 134
中文關鍵詞: 二氧化鈦奈米柱陣列異質接面太陽能電池介面修飾
外文關鍵詞: TiO2 nanorod array, heterojunction solar cell, interfacial modification
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究導入一垂直於基板的二氧化鈦單晶奈米柱陣列(TiO2 nanorod array)作為電子受體,提供電子一直接的傳導路徑,再利用旋轉塗佈法注入聚(3-己基噻吩) [poly(3-hexylthiophene-2,5-diyl), P3HT]作為電子施體,組裝P3HT/TiO2奈米柱異質接面太陽能電池。繼以釕(Ruthenium, Ru)有機金屬染料與二氫吲哚(Indoline)有機染料修飾二氧化鈦奈米柱表面,藉以改善電池中有機與無機之介面不相容的問題。此外,亦加入四-特-丁基吡啶 (4-tert-butylpyridine, TBP) 處理於二氧化鈦奈米柱表面,並分別探討染料和TBP對介面修飾之影響。利用循環伏安法(cyclic voltammetry, CV)及表面電位顯微鏡(Kelvin probe force microscope, KPM)定義費米能階(Fermi level)對齊(aligned)後各層材料之能階位置,證明高吸光係數之染料與P3HT可同時提供光電流。利用時間解析光激螢光光譜(time-resolved photoluminescence, TRPL)及電化學交流阻抗分析(electrochemical impedance spectroscopic, EIS)分別分析電荷轉移與再結合特性。經由TBP進一步處理D149修飾介面之元件,促使P3HT的光電子能有效的在介面分離,同時也抑制了逆反應發生的機率及降低電子的傳輸阻力。在二氧化鈦奈米柱長度為650 nm下,此元件之最佳效率達1.9 %,其Voc= 0.50 V,Jsc= 6.76 mA/cm2,而FF= 0.56。此外,經D149介面修飾之元件,進一步將二氧化鈦奈米柱長度增長為1.5 µm,效率可達2.63 %。

    TiO2 nanorod (NR) array/poly(3-hexylthiophene) (P3HT) heterojunction solar cells have been fabricated in this study. The vertically aligned single crystal TiO2 nanorod (NR) array was synthesized on the FTO substrate by hydrothermal method. Significant enhancement of the cell efficiency is achieved by interfacial modification using Ruthenium dye and Indoline dye as well as further treating with 4-tert-butylpyridine (TBP). Cyclic voltammetry (CV) and Kelvin probe force microscope (KPM) are employed to determine the aligned energy level diagrams of the devices. Both dye molecule and P3HT contributing to photocurrent generation of the interface-modified heterojunction solar cells is therefore concluded according to the energy level diagrams. Moreover, the charge separation and recombination in the interface-modified TiO2 NR array/P3HT heterojunction solar cells are investigated by time-resolved photoluminescence (TRPL) and electrochemical impedance spectroscopic (EIS). With a TiO2 NR thickness of 650 nm, the D149/TBP-modified TiO2 NR array/P3HT heterojunction solar cell possesses an efficiency of 1.9 % with a short circuit current density (Jsc) of 6.76 mA/cm2, an open circuit voltage (Voc) of 0.5 V, and a fill factor (FF) of 0.56. The enrichment of cell performance is attributed to the enhancement of charge separation and suppression of recombination at TiO2 NR/P3HT interface and improvement of electron transporting in TiO2 NR by the modification of effective dye and TBP. A efficiency of 2.63 % is further achieved in the D149-modified cell by elongating the TiO2 NR thickness to 1.5 µm.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池簡介 2 1-3 有機高分子太陽能電池 4 1-4 研究動機 7 第二章 理論基礎與文獻回顧 8 2-1 太陽能電池 8 2-1-1 太陽光頻譜照度 8 2-1-2 太陽能電池基本原理 10 2-1-2-1 理想太陽能電池之電路模型 10 2-1-2-2 實際太陽能電池之電路模型 15 2-2 二氧化鈦之性質與應用 18 2-3 有機高分子太陽能電池 21 2-3-1 有機導電高分子材料之載子傳導機制 21 2-3-2 有機高分子太陽能電池工作原理 22 2-3-3 有機高分子太陽能電池特性分析 26 2-4 電化學交流阻抗 28 2-4-1 交流電路阻抗基本原理 29 2-4-2 電化學交流阻抗分析染料敏化太陽能電池 33 2-4-3 電化學交流阻抗分析固態染料敏化太陽能電池 38 2-5 各式有機高分子太陽能電池之發展 41 2-5-1 雙層異質接面 41 2-5-2 混合型異質接面 42 2-5-3 有機/無機混合型異質接面 44 2-5-4 反轉式有機/無機混合型異質接面 48 2-5-5 固態染料敏化太陽能電池 52 第三章 實驗步驟與研究方法 54 3-1 實驗材料 54 3-1-1 成長二氧化鈦奈米柱之材料 54 3-1-2 組裝反轉式有機/無機異質接面太陽能電池之材料 54 3-2 實驗流程 58 3-2-1 四氯化鈦前處理 59 3-2-2 成長二氧化鈦奈米柱陣列與四氯化鈦後處理 59 3-2-3 二氧化鈦奈米柱表面修飾 60 3-2-4 組裝反轉式有機/無機異質接面太陽能電池 60 3-3 分析與鑑定 62 3-3-1 掃描式電子顯微鏡分析(SEM) 62 3-3-2 穿透式電子顯微鏡(TEM) 65 3-3-3 X光繞射分析(XRD) 68 3-3-4 拉曼光譜分析 70 3-3-5 紫外光-可見光吸收光譜儀 72 3-3-6 時間解析光激螢光光譜儀(TRPL) 73 3-3-7 原子力顯微鏡(AFM) 75 3-3-8 表面電位顯微鏡(KPM) 75 3-3-9 太陽能電池效率量測 77 3-3-10 電化學交流阻抗分析(EIS) 78 第四章 結果與討論 81 4-1 二氧化鈦奈米柱陣列之結構分析與鑑定 81 4-2 二氧化鈦表面修飾對P3HT之影響 84 4-3 染料修飾P3HT/TiO2奈米柱異質接面太陽能電池 88 4-3-1 介面修飾對元件效率之影響 89 4-3-2 介面修飾對開路電壓(Voc)之影響 90 4-3-3 介面修飾對短路電流(Jsc)之影響 90 4-3-4 以電化學交流阻抗分析(EIS)分析介面修飾對元件之影響 98 4-3-5 時間解析光激螢光光譜分析(TRPL) 100 4-4 四-特-丁基吡啶(TBP)處理D149修飾之P3HT/TiO2奈米柱太陽能電池之效應 102 4-4-1 TBP處理對元件效率之影響 102 4-4-2 TBP處理對元件能階位置之影響 106 4-4-3 以電化學交流阻抗分析(EIS)分析TBP對元件之影響 110 4-4-4 時間解析光激螢光光譜分析(TRPL) 112 4-5 二氧化鈦奈米結構對太陽能電池效率之影響 114 4-5-1 四氯化鈦後處理時間效應 114 4-5-2 二氧化鈦奈米柱長度效應 119 第五章 總結論 121 第六章 參考文獻 124

    [1] M. Grätzel, Photoelectrochemical cells, Nature 414, 338-344 (2001)
    [2] D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 25, 676 (1954)
    [3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables(version 37), Prog. Photovolt: Res. Appl. 19, 84-92 (2011)
    [4] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states, ACS Nano 4, 6032-6038 (2010)
    [5] L. M. Chen, Z. Hong, G. Li, Y. Yang, Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells, Adv. Mater. 21, 1434-1449 (2009)
    [6] L. Kazmerski, National Renewable Energy Laboratory (NREL)
    [7] J. N. de Freitas, A. F. Nogueira, M. A. de Paoli, New insights into dye-sensitized solar cells with polymer electrolytes, J. Mater. Chem. 19, 5279-5294 (2009)
    [8] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissӧrtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature 395, 583-585 (1998)
    [9] B. R. Saunders, M. L. Turner, Nanoparticle-polymer photovoltaic cells, Advances in Colloid and Interface Science 138, 1-23 (2008)
    [10] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater. 22, E135-E138 (2010)
    [11] J. Bouclé, P. Ravirajanac, J. Nelson, Hybrid polymer-metal oxide thin films for photovoltaic applications, J. Mater. Chem. 17, 3141-3153 (2007)
    [12] C. H. Chuang, Y. Y. Lin, Y. H. Tseng, T. H. Chu, C. C. Lin, W. F. Su, C. W. Chen, Nanoscale morphology control of polymer/TiO2 nanocrystal hybrids: photophysics, charge generation, charge transport, and photovoltaic properties, J. Phys. Chem. C 114, 18717-18724 (2010)
    [13] Y. Y. Lin, T. H. Chu, S. S. Li, C. H. Chuang, C. H. Chang, W. F. Su, C. P. Chang, M. W. Chu, C. W. Chen, Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells, J. Am. Chem. Soc. 131, 3644-3649 (2009)
    [14] Y. C. Huang, J. H. Hsu, Y. C. Liao, W. C. Yen, S. S. Li, S. T. Lin, C. H. Chen, W. F. Su, Employing an amphiphlic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO2 hybrid solar cell, J. Mater. Chem. 21, 4450-4456 (2011)
    [15] J. S. Huang, C. Y. Chou, C. F. Lin, Enhancing performance of organic-inorganic hybrid solar cells using a fullerene interlayer from all-solution processing, Solar Energy Materials & Solar Cells 94, 182-186 (2010)
    [16] M. Jørgensen, K. Norrman, F. C. Krebs, Stability/degradation of polymer solar cells, Solar Energy Materials & Solar Cells 92, 686-714 (2008)
    [17] R. Zhu, C. Y. Jiang, B. Liu, S. Ramakrishna, Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using s metal-free organic dye, Adv. Mater. 21, 994-1000 (2009)
    [18] G. K. Mor, S. Kim, M. Paulose, O. K. Varghese, K. Shankar, J. Basham, C. A. Grimes, Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells, Nano Letters 9, 4250-4257 (2009)
    [19] K. J. Kim, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions, Chem. Mater. 14, 1042-1047 (2002)
    [20] N. G. Park, J. van de Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J. Phys. Chem. B 104, 8989-8994 (2000)
    [21] B. Liu, E. S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc. 131, 3985-3990 (2009)
    [22] J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu J. S. Chen, Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells, Nanotechnology 19, 105702 (2008)
    [23] S. O. Kasap, Optoelectronics and photonics: principle and practices, Prentice Hall 255-273 (2001)
    [24] http://www.eyesolarlux.com/Solar-simulation-energy.htm
    [25]J. Nelson, The physics of solar cells, Imperial College Press 1-16 (2003)
    [26] T. Markvart, L. Castafier, Solar cells: materials, manufacture and operation, Elsevier 6-27 (2005)
    [27] B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737-740 (1991)
    [28] Z. Zhang, C. C. Wang, R. Zakara, J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B 102, 10871-10878 (1998)
    [29] Y. Zhu, J. Shi, Z. Zhang, C. Zhang, X. Zhang, Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide, Anal. Chem. 74, 120-124 (2002)
    [30] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37-38 (1972)
    [31] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414, 359-367 (2001)
    [32] K. W. Park, S. B. Han, J. M. Lee, Photo(UV)-enhanced performance of Pt-TiO2 nanostructure electrode for methanol oxidation, Electrochem. Commun. 9, 1578-1581 (2007)
    [33] J. K. Oh, J. K. Lee, H. S. Kim, S. B. Han, K.W. Park, TiO2 branched nanostructure electrodes synthesized by seeding method for dye-sensitized solar cells, Chem. Mater. 22, 1114-1118 (2010)
    [34] H. Peng, J. Li, Quantum confinement and electronic properties of rutile TiO2 nanowires, J. Phys. Chem. C 112, 20241-20245 (2008)
    [35] J. J. Wu, C. C. Yu, Aligned TiO2 nanorods and nanowalls, J. Phys. Chem. B. 108, 3377-3379 (2004)
    [36] W. P. Liao, J. J. Wu, Wet chemical route to hierarchical TiO2 nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells, J. Mater. Chem. 21, 9255-9262 (2011)
    [37] B. Kippelen, J. L. Brédas, Organic photovoltaics, Energy Environ. Sci. 2, 251-261 (2009)
    [38] J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, L. Schmidt-Mende, Nanostructured organic and hybrid solar cells, Adv. Mater. 23, 1810-1828 (2011)
    [39] H. Hoppe, N. S. Sariciftci, Organic solar cells: An overview, J. Meter. Res. 19, 1924-1945 (2004).
    [40] S. R. Forrest, The limits to organic photovoltaic cell efficiency, Mrs Bull. 30, 28-32 (2005)
    [41] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater. 11, 374-380 (2001)
    [42] D. Cheyns, J. Poortmans, P. Hereman, Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells, Phys. Rev. B 77, 165332 (2008)
    [43] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, Cathode dependence of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 94, 6849-6854 (2003)
    [44] F. Monestiera, J. J. Simona, P. Torchioa, L. Escoubasa, F. Florya, S. Baillyb, R. de Bettigniesb, S. Guillerezb, C. Defranoux, Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend, Solar Energy Materials & Solar Cells 91, 405-410 (2007)
    [45] M. Y. Songa, K. J. Kima, D. Y. Kim, Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEHPPV heterojunction devices, Solar Energy Materials & Solar Cells 85, 31-39 (2005)
    [46] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater. 4, 864-868 (2005)
    [47] Y. Terao, H. Sasabe, C. Adachi, Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells, Appl. Phys. Lett. 90, 103515 (2007)
    [48] http://en.wikipedia.org/wiki/Electrical_impedance
    [49] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, Electrochimica Acta 47, 4213-4225 (2002)
    [50] J. Bisquert, Theory of the impedance of electron diffusion and recombination in a thin layer, J. Phys. Chem. B 106, 325-333 (2002)
    [51] X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, S. Ramakrishna, An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material, Adv. Mater. 22, E150-E155 (2010)
    [52] F. F. Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, M. Grätzel, Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor, J. Am. Chem. Soc. 131, 558-562 (2009)
    [53] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 183-185 (1986)
    [54] G. Yu, K. Pakbaz, A. J. Heeger, Semiconducting polymer diodes: large size low cost photodetectors with excellent visible-ultraviolet sensitivity, Appl. Phys. Lett. 64, 3422-3424 (1994)
    [55] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science 270, 1789-1791 (1995)
    [56] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Adv. Funct. Mater. 13, 85-88 (2003)
    [57] G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), J. Appl. Phys. 98, 043704 (2005)
    [58] J. Huang, G. Li, Y. Yang, Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C-61-butyric acid methyl ester blends, Appl. Phys. Lett. 87, 112105 (2005)
    [59] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater. 15, 1617-1622 (2007)
    [60] H. J. Snaith, A. Petrozza, S. Ito, H. Miura, M. Grätzel, Charge generation and photovoltaic operation of solid-state dye-sensitized solar cells incorporating a high extinction coefficient indolene-based sensitizer, Adv. Funct. Mater. 19, 1810-1818 (2009)
    [61] W. Zhang, R. Zhu, L. Ke, X. Liu, B. Liu, S. Ramakrishna, Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells, Small 6, 2176-2182 (2010)
    [62] W. Zhang, R. Zhu, F. Li, Q. Wang, B. Liu, High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter, J. Phys. Chem. C 115, 7038-7043 (2011)
    [63] 汪建民,中國材料科學學會,材料分析
    [64] http://en.wikipedia.org/wiki/Raman_scattering
    [65] 謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二期,第二卷,28-39 (2005)
    [66] P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, J. A. M. van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells, J. Phys. Chem. B 110, 19191-19197 (2006)
    [67] T. Miyasaka, Dye-sensitized solar cells built on plastic substrates by low-temperature preparation of semiconductor films, Key Engineering Materials 451, 1-19 (2011)
    [68] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, M. Grätzel, High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness, Adv. Mater. 18, 1202-1205 (2006)
    [69] A. Mishra, N. Pootrakulchote, M. Wang, S. J. Moon, S. M. Zakeeruddin, M. Grätzel, P. Bäuerle, A thiophene-based anchoring ligand and its heteroleptic Ru(II)-complex for efficient thin-film dye-sensitized solar cells, Adv. Funct. Mater. 21, 963-970 (2011)
    [70] M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44, 6841-6851 (2005)
    [71] H. Yoshitake, D. Abe, Raman spectroscopic study of the framework structure of amorphous mesoporous titania, Microporous and Mesoporous Materials 119, 267-275 (2009)
    [72] R. J. Davis, M. T. Lloyd, S. R. Ferreira, M. J. Bruzek, S. E. Watkins, L. Lindell, P. Sehati, M. Fahlman, J. E. Anthonyc, J. W. P. Hsu, Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment, J. Mater. Chem. 21, 1721-1729 (2011)
    [73] M. Pastore, F. de Angelis, Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation, ACS Nano 4, 556-562 (2010)
    [74] S. S. Pandey, S. Sakaguchi, Y. Yamaguchi, S. Hayase, Influence of nature of surface dipoles on observed photovoltage in dye-sensitized solar cells as probed by surface potential measurement, Organic Electronics 11, 419-426 (2010)
    [75] T. le Bahers, F. Labat, T. Pauporté, I. Ciofini, Effect of solvent and additives on the open-circuit voltage of ZnO-based dye-sensitized solar cells: a combined theoretical and experimental study, Phys. Chem. Chem. Phys. 12, 14710-14719 (2010)
    [76] H. Kusamaa, H. Oritab, H. Sugihara, DFT investigation of the TiO2 band shift by nitrogen-containing heterocycle adsorption and implications on dye-sensitized solar cell performance, Solar Energy Materials & Solar Cells 92, 84-87 (2008)
    [77] R. Gao, L. Wang, Y. Geng, B. Ma, Y. Zhu, H. Dong, Y. Qiu, Interface modification effects of 4-tertbutylpyridine interacting with N3 molecules in quasi-solid dye-sensitized solar cells, Phys. Chem. Chem. Phys. 13, 10635-10640 (2011)

    無法下載圖示 校內:2016-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE