| 研究生: |
林俊彥 Lin, Jiun-yan |
|---|---|
| 論文名稱: |
銅纖維含量對銅/酚醛樹脂基半金屬磨擦材料機械及磨潤性質的影響 Effect of Copper Fiber Content on Mechanical and Tribological Properties of Copper/Phenolic Resin-based Semi-metallic Friction Material |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 磨擦材料 、磨潤 |
| 外文關鍵詞: | friction material, wear |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用酚醛樹脂、紅銅粉及紅銅纖維製作磨擦材料,藉由改變銅粉與銅纖維的相對含量,並經由兩種不同製程方法,探討纖維含量對銅/酚醛樹脂基半金屬磨擦材料機械及磨潤性質的影響。研究結果概述如下:
實驗結果發現,添加40 vol%紅銅纖維的磨擦材料,在經穩定化處理後的尺寸安定性最佳;而各成分試片經半碳化處理後的尺寸安定性差異不大。
機械性質方面,未經半碳化處理的試片,其抗壓強度與硬度會隨纖維含量上升而增加,至纖維含量為10 wt%時達最大值,再提高纖維含量則抗壓強度與硬度不升反降。而經半碳化處理的試片之抗壓強度與硬度隨著纖維含量增加而下降。
磨潤性質方面,經穩定化處理的各試片,磨耗後的磨擦係數差異不大,約介於0.1與0.3之間,且磨耗中期以後有衰退現象;各試片的磨擦溫度亦大致相同,最高溫度約為250℃,而F50試片的磨擦係數與溫度較其他試片略高一點。磨耗損失方面,經穩定化處理的各試片,磨耗損失隨著纖維含量增加而有上升趨勢,直到纖維含量10 vol%達最大值,再提高纖維含量則磨耗損失降低。表面粗糙度方面,各試片磨耗後的表面粗糙度會隨著纖維含量增加而增加。
經半碳化處理的各試片,在纖維含量低於10 vol%時磨擦係數約介於0.2與0.4之間,而纖維含量在25 vol%以上時磨擦係數約為0.2~0.5,其中F40試片磨擦係數較穩定。各試片磨擦溫度差異不大(最高溫約300℃),而F40及F50試片溫度較高。磨耗損失方面,各試片磨耗量隨纖維含量增加而下降,其中F40試片具有最低的磨耗損失。表面粗糙度方面,除F0試片表面粗糙度較高以外,其餘試片在磨耗前後的表面粗糙度差異不大。
總結以上的實驗結果,發現磨擦材料中紅銅纖維含量為40 vol%時,並經過半碳化熱處理,其具有尺寸安定性佳、磨擦係數高、磨耗量低等優點,因此為較佳的成分比例。
關鍵字:磨擦材料、磨潤
In this research, we used phenolic resin, copper powder, and copper fiber to manufacture friction material. By changing the relative content of copper powder and copper fiber, and two different manufacturing process, we understood the effect of copper fiber content on mechanical and tribological properties of copper/phenolic resin-based semi-metallic friction material. The results are as follows:
The results show that friction materials containing 40 vol% copper fiber have the best size stability after post-curing. All specimens have little difference of size stability after semi-carbonizing.
The results of mechanical properties of materials after post-curing show that compressive strength and hardness increase with increasing fiber content, until fiber content is 10 wt% has the maximum. When fiber content is more than 10 wt%, compressive strength and hardness decrease with increasing fiber content. Compressive strength and hardness of all specimens decrease with increasing fiber content after semi-carbonizing.
Materials being post-cured show little difference of friction coefficient, about lying between 0.1 and 0.3, and the friction coefficient fades after half of wear. All specimens have almost the same friction temperature, about 250℃ at the maximum. F50 sample have higher friction coefficient and temperature. Weight loss increase when fiber content increases until fiber content is 10 vol% has the maximum, when fiber content is more than 10 vol%, weight loss decreases with increasing fiber content. Surface roughness increases with increasing fiber content.
When materials being semi-carbonized, friction coefficient lie between 0.2and 0.4 when fiber content less than 10 vol%, and lie between 0.2and 0.5 when fiber content more than 25 vol%. Among all specimens, F40 exhibits more stable friction coefficient. All specimens have almost the same friction temperature, about 300℃ at the maximum, while F40 and F50 have higher friction temperature. Weight loss decreases with increasing fiber content, and F40 has lowest weight loss. All specimens exhibit almost the same surface roughness before and after wear, except F0 sample.
Experimental results indicate that adding 40 vol% copper fiber into friction material and being semi-carbonized can make materials have best size stability, higher friction coefficient, and lower wear loss, so 40 vol% is the best fiber content.
Key words:friction material, wear
ASTM D695-96. Standard Test Method for Compressive Properties of Rigid Plastics, 1996
Bear E., Moet A., Aglan H., High performance polymers :structure, properties, composites, fibers, Oxford University Press, New York, p14~p16, 1991
Bijwe J., Rattan R., Fahim M., Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric, Tribology International 40:844-854, 2007
Bono C.M., Levine R.G., Rao J.P. Behrens F.F., Nonarticular proximal tibia fractures: Treatment options and decision making, American Academy of Orthopaedic Surgeons 9:176-186, 2001
Burchell T.D., Carbon materials for advanced technologies, Pergamon, New York, p434, 1999
Burris D.L. and Sawyer W.G., A low friction and ultra low wear rate PEEK/PTFE composite, Wear 261:410-418, 2006
Chang L., Zhang Z., Ye L., Friedrich K., Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40:1170-1178, 2007
Cho M.H., Ju J., Kim S.J., Jang H., Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear 260:855-860, 2006
Cho M.H., Kim S.J., Basch R.H., Fash J.W., Jang H., Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure, Tribology International 36:537-545, 2003
CNS 2586, D2002. Brake linings for automobiles
CNS 8813, D3122. Method of test for brake shoe assembly of motorcycles
CNS 8814, D2129. Brake shoe assembly for motorcycles
Dorinson A. and Ludema K. C., Mechanics and chemistry in lubrication, Elsevier Science Publishing, New York, p553, 1985
Hayashi N., Matsui A., Takahashi S., Effect of surface topography on transferred film formation in plastic and metal sliding system, Wear 225-229:329-338, 1999
Hutchings I.M., Tribology: Friction and wear of engineering materials, CRC, Boca Raton, 1992
Jang H., Ko K., Kim S.J., Basch R.H., Fash J.W., The effect of metal fibers on the friction performance of automotive brake friction materials, Wear 256:406-414, 2004
Kim S.J. and Jang H., Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International 33:477-484, 2000
Kim S.J., Cho M.H., Lim D.-S., Jang H., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251:1484-1491, 2001
Kim S.J., Cho M.H., Cho K.H., Jang H., Complementary effects of solid lubricants in the automotive brake lining, Tribology International 40:15-20, 2007
Kishore, Sampathkumaran P., Seetharamu S., Thomas P., Janardhana M., A study on the effect of the type and content of filler in epoxy-glass composite system on the friction and slide wear characteristics, Wear 259:634-641, 2005
Kurt A. and Boz M., Wear behavior of organic asbestos based and bronze based powder metal brake linings, Materials and Design 26:717-721, 2005
Lee H.G., Hwang H.Y., Lee D.G., Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites, Wear 261:453-459, 2006
Mandal D., Dutta B.K., Panigrahi S.C., Wear and friction of stir cast aluminum-base short steel fiber reinforced composites, Wear 257:654-664, 2004
Mutlu I., Oner C., Findik F., Boric acid effect in phenolic composites on tribological properties in brake linings, Materials and Design 28:480-487, 2007
Ozturk B., Arslan F., Ozturk S., Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials, Tribology International 40:37-48, 2007
Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad, Wear 256:1176-1181, 2004
Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear 261:634-641, 2006
Stachowiak G.W., Wear:materials, mechanisms, and practice, Wiley, Chichester, p12, 2005
Wu J.Y., Zhou Y.C., Wang J.Y., Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Materials Science and Engineering A 422:266-271, 2006
Yan Y., Shi X., Liu J., Zhao T., Yu Y., Thermosetting resin system based on novolak and bismaleimide for resin-transfer molding, J Appl Polym Sci(83):1651-1657, 2002
Yi G. and Yan F., Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262:121-129, 2007
Yuji H. and Takahisa K., Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads, Tribology Transactions 39(2):346-353, 1996
Zum Gahr K.H., Microstructure and wear of materials, Elsevier, New York, 1987.
Limpert, 高維山譯,煞車系統設計及安全性,科技圖書,台北市,民國93年
馬振基,高分子複合材料,國立編譯館,台北市,民國95年
李育德,高分子導論,黎明書店,新竹,民國76年
何淑靜,銅/酚醛樹脂基半金屬磨擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,民國93年
許明發,郭文雄,熱塑性複合材料,黎明書店,新竹,民國93年
行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,民國85年
陽春欽,磨潤學原理與應用,科技圖書股份有限公司,台北市,民國75年
校內:2106-07-31公開