簡易檢索 / 詳目顯示

研究生: 林俊彥
Lin, Jiun-yan
論文名稱: 銅纖維含量對銅/酚醛樹脂基半金屬磨擦材料機械及磨潤性質的影響
Effect of Copper Fiber Content on Mechanical and Tribological Properties of Copper/Phenolic Resin-based Semi-metallic Friction Material
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 磨擦材料磨潤
外文關鍵詞: friction material, wear
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用酚醛樹脂、紅銅粉及紅銅纖維製作磨擦材料,藉由改變銅粉與銅纖維的相對含量,並經由兩種不同製程方法,探討纖維含量對銅/酚醛樹脂基半金屬磨擦材料機械及磨潤性質的影響。研究結果概述如下:
    實驗結果發現,添加40 vol%紅銅纖維的磨擦材料,在經穩定化處理後的尺寸安定性最佳;而各成分試片經半碳化處理後的尺寸安定性差異不大。
    機械性質方面,未經半碳化處理的試片,其抗壓強度與硬度會隨纖維含量上升而增加,至纖維含量為10 wt%時達最大值,再提高纖維含量則抗壓強度與硬度不升反降。而經半碳化處理的試片之抗壓強度與硬度隨著纖維含量增加而下降。
    磨潤性質方面,經穩定化處理的各試片,磨耗後的磨擦係數差異不大,約介於0.1與0.3之間,且磨耗中期以後有衰退現象;各試片的磨擦溫度亦大致相同,最高溫度約為250℃,而F50試片的磨擦係數與溫度較其他試片略高一點。磨耗損失方面,經穩定化處理的各試片,磨耗損失隨著纖維含量增加而有上升趨勢,直到纖維含量10 vol%達最大值,再提高纖維含量則磨耗損失降低。表面粗糙度方面,各試片磨耗後的表面粗糙度會隨著纖維含量增加而增加。
    經半碳化處理的各試片,在纖維含量低於10 vol%時磨擦係數約介於0.2與0.4之間,而纖維含量在25 vol%以上時磨擦係數約為0.2~0.5,其中F40試片磨擦係數較穩定。各試片磨擦溫度差異不大(最高溫約300℃),而F40及F50試片溫度較高。磨耗損失方面,各試片磨耗量隨纖維含量增加而下降,其中F40試片具有最低的磨耗損失。表面粗糙度方面,除F0試片表面粗糙度較高以外,其餘試片在磨耗前後的表面粗糙度差異不大。
    總結以上的實驗結果,發現磨擦材料中紅銅纖維含量為40 vol%時,並經過半碳化熱處理,其具有尺寸安定性佳、磨擦係數高、磨耗量低等優點,因此為較佳的成分比例。
    關鍵字:磨擦材料、磨潤

    In this research, we used phenolic resin, copper powder, and copper fiber to manufacture friction material. By changing the relative content of copper powder and copper fiber, and two different manufacturing process, we understood the effect of copper fiber content on mechanical and tribological properties of copper/phenolic resin-based semi-metallic friction material. The results are as follows:
    The results show that friction materials containing 40 vol% copper fiber have the best size stability after post-curing. All specimens have little difference of size stability after semi-carbonizing.
    The results of mechanical properties of materials after post-curing show that compressive strength and hardness increase with increasing fiber content, until fiber content is 10 wt% has the maximum. When fiber content is more than 10 wt%, compressive strength and hardness decrease with increasing fiber content. Compressive strength and hardness of all specimens decrease with increasing fiber content after semi-carbonizing.
    Materials being post-cured show little difference of friction coefficient, about lying between 0.1 and 0.3, and the friction coefficient fades after half of wear. All specimens have almost the same friction temperature, about 250℃ at the maximum. F50 sample have higher friction coefficient and temperature. Weight loss increase when fiber content increases until fiber content is 10 vol% has the maximum, when fiber content is more than 10 vol%, weight loss decreases with increasing fiber content. Surface roughness increases with increasing fiber content.
    When materials being semi-carbonized, friction coefficient lie between 0.2and 0.4 when fiber content less than 10 vol%, and lie between 0.2and 0.5 when fiber content more than 25 vol%. Among all specimens, F40 exhibits more stable friction coefficient. All specimens have almost the same friction temperature, about 300℃ at the maximum, while F40 and F50 have higher friction temperature. Weight loss decreases with increasing fiber content, and F40 has lowest weight loss. All specimens exhibit almost the same surface roughness before and after wear, except F0 sample.
    Experimental results indicate that adding 40 vol% copper fiber into friction material and being semi-carbonized can make materials have best size stability, higher friction coefficient, and lower wear loss, so 40 vol% is the best fiber content.
    Key words:friction material, wear

    總 目 錄 摘 要 ..I Abstract…………………………………………………………………………….....…III 誌 謝 V 總 目 錄…………………………………………………………………….……….…VI 表 目 錄…………………………...……………………………….…………………...X 圖 目 錄………………………………………………….………….…………………XI 第一章 前言 1 第二章 文獻回顧 3 2.1 磨擦材料簡介 3 2.1.1 磨擦材料的種類 3 2.1.2 磨擦材料的性質規範 5 2.1.3 磨擦材料的應用 6 2.2 石棉基磨擦材料的缺點與禁用 7 2.3 半金屬基磨擦材料之組成物介紹 7 2.3.1 基材 7 2.3.2 纖維 10 2.3.3 固體潤滑劑(Solid lubricant) 12 2.3.4 填充劑(Filler)、研磨劑(Abrasive)及磨擦調整劑(Friction modifier) 13 2.4 半金屬基磨擦材料之製程介紹 14 2.4.1 熱壓 14 2.4.2 穩定化 14 2.4.3 半碳化 15 2.5 磨潤性質研究 15 2.5.1 磨潤學簡介 15 2.5.2 磨擦原理 16 2.5.3 影響磨擦特性的因素 16 2.5.4 磨耗機制 19 第三章 實驗方法 34 3.1 實驗原料 34 3.1.1 酚醛樹脂 34 3.1.2 紅銅粉 34 3.1.3 紅銅纖維 34 3.2 實驗製程 35 3.2.1 混粉 35 3.2.2 熱壓 35 3.2.3 穩定化 35 3.2.4 半碳化 36 3.2.5 磨床處理 36 3.2.6 抗壓試片製備 37 3.3 性質量測 37 3.3.1 厚度及重量變化量測 37 3.3.2 抗壓強度測試 38 3.3.3 硬度測試 38 3.3.4 磨耗試驗 38 3.3.5 表面粗糙度測量 40 3.4 顯微結構分析 41 3.4.1 光學相機觀察 41 3.4.2 掃描式電子顯微鏡觀察(SEM)及波長散佈光譜儀(WDS) 41 第四章 結果與討論 54 4.1 銅纖維含量對尺寸安定性的影響 54 4.1.1 銅纖維含量對厚度變化的影響 54 4.1.2 銅纖維含量對重量變化的影響 55 4.1.3 銅纖維含量對密度變化的影響 56 4.2 銅纖維含量對半金屬基磨擦材料機械性質的影響 58 4.2.1 銅纖維含量對抗壓強度的影響 58 4.2.2 銅纖維含量對硬度的影響 60 4.3 銅纖維含量對半金屬基磨擦材料磨潤性質的影響 61 4.3.1 銅纖維含量對磨擦係數的影響 61 4.3.2 銅纖維含量對溫度的影響 63 4.3.3 銅纖維含量對磨耗損失的影響 64 4.3.4 銅纖維含量對磨耗前後表面粗糙度的影響 65 4.3.5 銅纖維含量對磨耗前後表面型態的影響 66 第五章 結論 119 第六章 參考文獻 121 表 目 錄 表2-1-1 CNS 2586規範中溫度及磨擦係數表................................................21 表2-1-2 CNS 8814規範中磨擦材料接著強度表............................................23 表3-1-1 試片成分及代號表..............................................................................42 表3-1-2 酚醛樹脂規格......................................................................................42 表3-1-3 紅銅纖維規格......................................................................................43 表3-3-1 對磨材灰口鑄鐵規格與性質表.........................................................43 圖 目 錄 圖2-1-1 煞車片磨擦金屬底板示意圖.............................................................24 圖2-1-2 應用於煞車及離合器系統的磨擦材料............................................24 圖2-1-3 鼓式煞車磨擦塊..................................................................................25 圖2-1-4 鼓式煞車示意圖..................................................................................25 圖2-1-5 碟式煞車示意圖..................................................................................26 圖2-3-1 PTFE化學結構圖.................................................................................27 圖2-3-2 PEEK化學結構圖.................................................................................27 圖2-3-3 線性酚醛樹脂化學結構圖.................................................................27 圖2-3-4 環氧樹脂化學結構圖..........................................................................28 圖2-3-5 矽樹脂化學結構圖..............................................................................28 圖2-3-6 (a)石墨及(b)二硫化鉬之層狀結構圖................................................29 圖2-4-1 酚醛樹脂的交聯反應..........................................................................30 圖2-5-1 (a)滾動磨擦與(b)滑動磨擦示意圖....................................................30 圖2-5-2 纖維排列方向示意圖..........................................................................31 圖2-5-3 磨耗機制示意圖..................................................................................32 圖3-2-1 實驗流程圖..........................................................................................44 圖3-2-2 熱壓模具示意圖..................................................................................45 圖3-2-3 穩定化升溫曲線圖..............................................................................46 圖3-2-4 半碳化升溫曲線圖..............................................................................46 圖3-2-5 抗壓強度測試試片..............................................................................47 圖3-3-1 桌上型萬能試驗機..............................................................................48 圖3-3-2 洛氏硬度機..........................................................................................49 圖3-3-3 洛氏硬度測試用鋼球壓頭.................................................................49 圖3-3-4 磨耗試驗機外觀圖..............................................................................50 圖3-3-5 磨耗試驗機示意圖..............................................................................51 圖3-3-6 熱電偶位置示意圖..............................................................................52 圖3-3-7 表面粗糙度(Ra)測試法示意圖..........................................................53 圖4-1-1半金屬基磨擦材料在各製程階段的厚度值……………………........70 圖4-1-2 銅纖維含量對穩定化後厚度變化的影響........................................71 圖4-1-3 銅纖維含量對半碳化後厚度變化的影響........................................71 圖4-1-4半金屬基磨擦材料在各製程階段的重量值…………………………72 圖4-1-5 銅纖維含量對穩定化後重量變化的影響........................................73 圖4-1-6 銅纖維含量對半碳化後重量變化的影響........................................73 圖4-1-7 半金屬基磨擦材料在各製程階段的密度值....................................74 圖4-1-8 銅纖維含量對穩定化後密度變化的影響........................................75 圖4-1-9 銅纖維含量對半碳化後密度變化的影響........................................75 圖4-2-1 銅纖維含量對半金屬基磨擦材料抗壓強度的影響.......................76 圖4-2-2 各成分試片經穩定化熱處理後的SEM表面型態照片..................77 圖4-2-3 纖維與基材交界面的孔洞.................................................................79 圖4-2-4 各成分試片經半碳化熱處理後的SEM表面型態照片..................80 圖4-2-5 銅纖維含量對半金屬基磨擦材料硬度的影響...............................82 圖4-2-6 圖4-2-4(e)局部放大圖........................................................................83 圖4-3-1 各試片經穩定化熱處理後的磨擦係數圖........................................84 圖4-3-2 各試片經穩定化處理後的平均磨擦係數圖....................................87 圖4-3-3 各試片經半碳化熱處理後的磨擦係數圖........................................88 圖4-3-4 各試片經半碳化處理後的平均磨擦係數圖....................................91 圖4-3-5 經穩定化之各試片磨耗過程的溫度曲線圖....................................92 圖4-3-6各試片經穩定化處理後的平均磨擦溫度圖.....................................92 圖4-3-7 經半碳化之各試片磨耗過程的溫度曲線圖....................................93 圖4-3-8各試片經半碳化處理後的平均磨擦溫度圖.....................................93 圖4-3-9 纖維含量對穩定化熱處理試片磨耗損失的影響...........................94 圖4-3-10 纖維含量對穩定化熱處理試片厚度變化及比磨耗量的影響....94 圖4-3-11 纖維含量對半碳化熱處理試片磨耗損失的影響.........................95 圖4-3-12 纖維含量對半碳化熱處理試片厚度變化及比磨耗量的影響....95 圖4-3-13 經穩定化處理之各試片磨耗前後的表面粗糙度圖.....................96 圖4-3-14 經半碳化處理之各試片磨耗前後的表面粗糙度圖.....................96 圖4-3-15 經穩定化熱處理之各試片磨耗前後的表面形態照片.................97 圖4-3-16 經穩定化熱處理之各試片磨耗前後的SEM表面形態照片.......99 圖4-3-17 試片F0經穩定化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................101 圖4-3-18 試片F03經穩定化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................102 圖4-3-19 試片F10W 經穩定化處理之磨耗前後表面形態照片及元素分佈圖.....................................................................................................................103圖4-3-20 試片F10 經穩定化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................104 圖4-3-21 試片F25 經穩定化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................105 圖4-3-22 試片F40 經穩定化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................106 圖4-3-23 試片F50 經穩定化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................107 圖4-3-24 經半碳化熱處理之各試片磨耗前後的表面形態照片...............108 圖4-3-25 經半碳化熱處理之各試片磨耗前後的SEM表面形態照片....110 圖4-3-26 試片F0 經半碳化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................112 圖4-3-27試片F3 經半碳化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................113 圖4-3-28試片F10W 經半碳化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................114 圖4-3-29 試片F10 經半碳化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................115 圖4-3-30 試片F25經半碳化處理之磨耗前後表面形態照片及元素分佈圖 ..............................................................................................................................116 圖4-3-31 試片F40 經半碳化處理之磨耗前後表面形態照片及元素分佈圖.........................................................................................................................117 圖4-3-32試片F50 經半碳化處理之磨耗前後表面形態照片及元素分佈圖 ..............................................................................................................................118

    ASTM D695-96. Standard Test Method for Compressive Properties of Rigid Plastics, 1996
    Bear E., Moet A., Aglan H., High performance polymers :structure, properties, composites, fibers, Oxford University Press, New York, p14~p16, 1991
    Bijwe J., Rattan R., Fahim M., Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric, Tribology International 40:844-854, 2007
    Bono C.M., Levine R.G., Rao J.P. Behrens F.F., Nonarticular proximal tibia fractures: Treatment options and decision making, American Academy of Orthopaedic Surgeons 9:176-186, 2001
    Burchell T.D., Carbon materials for advanced technologies, Pergamon, New York, p434, 1999
    Burris D.L. and Sawyer W.G., A low friction and ultra low wear rate PEEK/PTFE composite, Wear 261:410-418, 2006
    Chang L., Zhang Z., Ye L., Friedrich K., Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40:1170-1178, 2007
    Cho M.H., Ju J., Kim S.J., Jang H., Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear 260:855-860, 2006
    Cho M.H., Kim S.J., Basch R.H., Fash J.W., Jang H., Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure, Tribology International 36:537-545, 2003
    CNS 2586, D2002. Brake linings for automobiles
    CNS 8813, D3122. Method of test for brake shoe assembly of motorcycles
    CNS 8814, D2129. Brake shoe assembly for motorcycles
    Dorinson A. and Ludema K. C., Mechanics and chemistry in lubrication, Elsevier Science Publishing, New York, p553, 1985
    Hayashi N., Matsui A., Takahashi S., Effect of surface topography on transferred film formation in plastic and metal sliding system, Wear 225-229:329-338, 1999
    Hutchings I.M., Tribology: Friction and wear of engineering materials, CRC, Boca Raton, 1992
    Jang H., Ko K., Kim S.J., Basch R.H., Fash J.W., The effect of metal fibers on the friction performance of automotive brake friction materials, Wear 256:406-414, 2004
    Kim S.J. and Jang H., Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International 33:477-484, 2000
    Kim S.J., Cho M.H., Lim D.-S., Jang H., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251:1484-1491, 2001
    Kim S.J., Cho M.H., Cho K.H., Jang H., Complementary effects of solid lubricants in the automotive brake lining, Tribology International 40:15-20, 2007
    Kishore, Sampathkumaran P., Seetharamu S., Thomas P., Janardhana M., A study on the effect of the type and content of filler in epoxy-glass composite system on the friction and slide wear characteristics, Wear 259:634-641, 2005
    Kurt A. and Boz M., Wear behavior of organic asbestos based and bronze based powder metal brake linings, Materials and Design 26:717-721, 2005
    Lee H.G., Hwang H.Y., Lee D.G., Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites, Wear 261:453-459, 2006
    Mandal D., Dutta B.K., Panigrahi S.C., Wear and friction of stir cast aluminum-base short steel fiber reinforced composites, Wear 257:654-664, 2004
    Mutlu I., Oner C., Findik F., Boric acid effect in phenolic composites on tribological properties in brake linings, Materials and Design 28:480-487, 2007
    Ozturk B., Arslan F., Ozturk S., Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials, Tribology International 40:37-48, 2007
    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad, Wear 256:1176-1181, 2004
    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear 261:634-641, 2006
    Stachowiak G.W., Wear:materials, mechanisms, and practice, Wiley, Chichester, p12, 2005
    Wu J.Y., Zhou Y.C., Wang J.Y., Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Materials Science and Engineering A 422:266-271, 2006
    Yan Y., Shi X., Liu J., Zhao T., Yu Y., Thermosetting resin system based on novolak and bismaleimide for resin-transfer molding, J Appl Polym Sci(83):1651-1657, 2002
    Yi G. and Yan F., Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262:121-129, 2007
    Yuji H. and Takahisa K., Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads, Tribology Transactions 39(2):346-353, 1996
    Zum Gahr K.H., Microstructure and wear of materials, Elsevier, New York, 1987.
    Limpert, 高維山譯,煞車系統設計及安全性,科技圖書,台北市,民國93年
    馬振基,高分子複合材料,國立編譯館,台北市,民國95年
    李育德,高分子導論,黎明書店,新竹,民國76年
    何淑靜,銅/酚醛樹脂基半金屬磨擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,民國93年
    許明發,郭文雄,熱塑性複合材料,黎明書店,新竹,民國93年
    行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,民國85年
    陽春欽,磨潤學原理與應用,科技圖書股份有限公司,台北市,民國75年

    無法下載圖示 校內:2106-07-31公開
    校外:2106-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE