簡易檢索 / 詳目顯示

研究生: 王俊堯
Wang, Chun-Yao
論文名稱: 基於慣性感測器步態分析系統之研製及其阿茲海默氏症分類之應用
Development of an Inertial-Sensor-Based Gait Analysis System and Its Application in Alzheimer’s Disease Classification
指導教授: 詹寶珠
Chung, Pau-Choo
共同指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 75
中文關鍵詞: 步態分析阿茲海默氏症慣性感測器機率類神經網路多重任務
外文關鍵詞: Gait analysis, Alzheimer’s disease, Inertial sensor, Probabilistic neural network, Dual task
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文目的為研製一基於慣性感測器之步態分析系統,並將此系統作為阿茲海默氏症患者分類之應用。因此,我們透過配戴於受測者腳背上之穿戴式慣性感測器,偵測受測者執行單一任務/多重任務行走測試時的運動訊號。首先,本論文提出自動化步態分析演算法,其利用慣性感測訊號進行訊號前處理、步幅偵測及步態週期偵測後,獲得行走步數、行走時間、步長、步頻、步伐速度、步伐節奏、步幅時間、站立期時間、擺動期時間、步幅時間變異性、站立期時間變異性、擺動期時間變異性、站立期百分比、擺動期百分比等步態參數,藉此分析阿茲海默氏症患者與健康受測者在步態參數上的差異性。其次,本論文開發自動化阿茲海默氏症分類演算法,其利用慣性感測器所收集的訊號,並且藉由機率類神經分類器來加以辨識受測者是否屬於阿茲海默氏症族群,此演算法包含訊號前處理、步幅偵測、特徵擷取、特徵正規化、特徵選取、辨識器建置。結果顯示本論文提出之自動化步態分析演算法於單一任務/多重任務行走所獲得之步態參數在阿茲海默氏症患者與健康受測者間具有顯著的差異性;而利用自動化阿茲海默氏症分類演算法於多重任務行走情況下,其阿茲海默氏症辨識率為82.34%。經由單一任務/多重任務行走測試實驗結果,可以驗證此步態分析系統是一個有效的工具,期盼此系統可以輔助醫生診斷阿茲海默氏症患者。

    This thesis develops a useful inertial-sensor-based gait analysis system and applies the proposed instrument for Alzheimer’s disease classification. Therefore, we detected the walking-motion signals through inertial sensor devices mounted on participants’ feet during single- and dual-task walking tests. Firstly, we presented an automatic gait analysis algorithm composed of data collection, signal preprocessing, stride detection, and gait cycle detection to find out significant gait parameters between Alzheimer’s disease patients (AD) and healthy controls (HC) via the statistical analysis results. Secondly, we developed an automatic Alzheimer’s disease classification algorithm for classifying a participant whether is an AD patient or not, which consists of signal preprocessing, stride detection, feature extraction, feature normalization, feature selection, and classifier construction. According to the experimental results, the differences in most of the calculated gait parameters between AD group and HC group were significant. In addition, the proposed automatic classification algorithm achieved the accuracy of 82.34% in the dual-task walking. We could validate the proposed gait analysis system through the walking tests, and expect the system to be a useful tool for diagnosis of AD in the early stage.

    摘 要 i Abstract iii 誌 謝 v Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1-1 1.1 Motivation 1-1 1.2 Literature Survey 1-2 1.3 Purpose of the Study 1-5 1.4 Organization of the Thesis 1-6 Chapter 2 Automatic Gait Analysis Algorithm 2-1 2.1 Neuropsychological Test Performance 2-1 2.1.1 Cognitive Assessment Screening Instrument 2-1 2.1.2 Mini Mental State Examination 2-2 2.2 Inertial-Sensor-Based Wearable Device 2-2 2.3 Experimental Design 2-3 2.4 Automatic Gait Analysis Algorithm 2-5 2.4.1 Signal Preprocessing 2-6 2.4.2 Stride Detection 2-9 2.4.3 Gait Cycle Detection 2-15 2.4.4 Gait Parameters 2-16 Chapter 3 Automatic Alzheimer’s Disease Classification Algorithm 3-1 3.1 Signal Preprocessing and Stride Detection 3-2 3.2 Feature Extraction 3-2 3.3 Feature Normalization 3-5 3.4 Feature Selection 3-6 3.4.1 Maximum Signal to Noise Ratio (MSNR) 3-6 3.4.2 Sequential Forward Selection (SFS) 3-7 3.5 Classifier Construction 3-7 Chapter 4 Experimental Results 4-1 4.1 Participants 4-1 4.2 Gait Analysis 4-2 4.2.1 Stride Detection 4-2 4.2.2 Single-Task Walking Test 4-5 4.2.3 Dual-Task Walking Test 4-6 4.3 Alzheimer’s Disease Classification 4-7 4.3.1 Single-Task Walking Test 4-8 4.3.2 Dual-Task Walking Test 4-10 4.4 Discussion 4-11 Chapter 5 Conclusions and Future Work 5-1 5.1 Conclusions 5-1 5.2 Future Work 5-2 References 6-1

    [1] N. B. Alexander, J. M. Mollo, B. Giordani, J. A. Ashton-Miller, A. B. Schultz, J. A. Grunawalt, and N. L. Foster, “Maintenance of balance, gait patterns, and obstacle clearance in Alzheimer’s disease,” Neurology, vol. 45, no. 5, pp. 908-914, 1995.
    [2] G. Allali, F. Assal, R. W. Kressig, V. Dubost, F. R. Herrmann, and O. Beauchet, “Impact of impaired executive function on gait stability,” Dementia and Geriatric Cognitive Disorders, vol. 26, no. 4, pp. 364-369, 2008.
    [3] G. Allali, M. Meulen, and F. Assal, “Gait and cognition: The impact of executive function,” Schweizer Archiv fur Neurologie und Psychiatrie, vol. 161, no. 6, pp. 195-199, 2010.
    [4] B. R. Bloem, J. Gussekloo, A. M. Lagaay, E. J. Remarque, J. Haan, and R. G. J. Westendorp, “Idiopathic senile gait disoders are signs of subclinical disease,” Journal of the American Geriatrics Society, vol. 48, no. 9, pp. 1098-1101, 2000.
    [5] S. J. M. Bamberg, A. Y. Benbasat, D. M. Scarborough, D. E. Krebs, and J. A. Paradiso, “Gait analysis using a shoe-integrated wireless sensor system,” IEEE Trans. Information Technology in Biomedicine, vol. 12, no. 4, pp. 413-423, 2008.
    [6] B. B. Bendlina, M. L. Riesb, E. Canua, A. Sodhia, M. Lazarc, A. L. Alexanderd, C. M. Carlssona, M. A. Sagera, S. Asthanaa, and S. C. Johnsona, “White matter is altered with parental family history of Alzheimer's disease,” Alzheimer’s & Dementia, vol. 6, no. 5, pp. 394-403, 2010.
    [7] G. Cocchini, S. D. Sala, R. H. Logie, R. Pagani, L. Sacco, and H. Spinnler, “Dual task effects of walking when talking in Alzheimer’s disease,” Neurology, vol. 160, no. 1, pp. 74-80, 2004.
    [8] J. S. Choi, H. S. Oh, D. W. Kang, K. R. Mun, M. H. Choi, S. J. Lee, J. W. Yang, S. C. Chung, S. W. Mun, and G. R. Tack, “Comparison of gait and cognitive function among the elderly with Alzheimer’s disease, Mild Cognitive Impairment and healthy,” International Journal of Precision Engineering and Manufacturing, vol. 12, no. 1, pp. 169-173, 2011.
    [9] V. Dubost, R. W. Kressig, R. Gonthier, F. R. Herrmann, K. Aminian, B. Najafi, and O. Beauchet, “Relationships between dual-task related changes in stride velocity and stride time variability in healthy older adults,” Human Movement Science, vol. 25, no. 3, pp. 372-382, 2006.
    [10] M. R. Daliri, “Automatic diagnosis of neuro-degenerative diseases using gait dynamics,” Measurement, vol. 45, no. 7, pp. 1729-1734, 2012.
    [11] M. F. Folstein, S. E. Folstein, and P. R. McHugh, “«Mini-mental state»: A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189-198, 1975.
    [12] H. Förstl and A. Kurz, “Clinical features of Alzheimer’s disease,” European Archives of Psychiatry and Clinical Neuroscience, vol. 249, no. 6, pp. 288-290, 1999.
    [13] K. K. Gnanalingham, E. J. Byrne, A. Thornton, M. A. Sambrook, and P. Bannister, “Motor and cognitive function in Lewy body dementia: Comparison with Alzheimer’s and Parkinson’s diseases,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 62, no. 3, pp. 234-252, 1997.
    [14] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    [15] S. Gillain, E. Warzee, F. Lekeu, V. Wojtasik, D. Maquet, J.-L. Croisier, E. Salmon, and J. Petermans, “The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions,” Annals of Physical and Rehabilitation Medicine, vol. 52, no. 6, pp. 453-474, 2009.
    [16] J. H. Hollman, F. M. Kovash, J. J. Kubik, and R. A. Linbo, “Age-related differences in spatiotemporal markers of gait stability during dual task walking,” Gait & Posture, vol. 26, no. 1, pp. 113-119, 2007.
    [17] J. M. Hausdorff, A. Schweiger, T. Herman, G. Yogev-Seligmann, and N. Giladi, “Dual-task decrements in gait: Contributing factors among healthy older adults,” Journal of Gerontology: Medical Sciences, vol. 63, no. 12, pp. 1335-1343, 2008.
    [18] T. Ijmker and C. J. C. Lamoth, “Gait and cognition: The relationship between gait stability and variability with executive function in persons with and without dementia,” Gait & Posture, vol. 35, no. 1, pp. 126-130, 2012.
    [19] S. C. Johnson, T. W. Schmitz, M. A. Trivedi, M. L. Ries, B. M. Torgerson, C. M. Carlsson, S. Asthana, B. P. Hermann, and M. A. Sager, “The influence of Alzheimer disease family history and apolipoprotein E ɛ4 on mesial temporal lobe activation,” The Journal of Neuroscience, vol. 26, no. 22, pp. 6069-6079, 2006.
    [20] M. Djurić-Jovičić, N. S. Jovičić, I. Milovanović, S. Radovanović, N. Kresojević, and M. B. Popović, “Classification of walking patterns in Parkinson’s disease patients based on inertial sensor data,” in 10th Symposium on Neural Network Applications in Electrical Engineering, 2010, pp. 3-6.
    [21] J. A. Lee, S. H. Cho, Y. J. Lee, H. K. Yang, and J. W. Lee, “Portable activity monitoring system for temporal parameters of gait cycles,” Medical Systems, vol. 34, no. 5, pp. 959-966, 2009.
    [22] Q. Li, M. Young, V. Naing, and J. M. Donelan, “Walking speed estimation using a shank-mounted inertial measurement unit,” Journal of Biomechanics, vol. 43, no. 8, pp. 1640-1643, 2010.
    [23] C. J. Lamoth, F. J. Deudekom, J. P. Campen, B. A. Appels, O. J. Vries, and M. Pijnappels, “Gait stability and variability measures show effects of impaired cognition and dual-tasking in frail people,” Journal of NeuroEngineering and Rehabilitation, vol. 8, no. 1, pp. 1-9, 2011.
    [24] B. E. Maki, “Gait changes in older adults: Predictors of falls or indicators of fear?,” Journal of the American Geriatrics Society, vol. 45, no. 3, pp. 319-320, 1997.
    [25] P. D. Meek, E. K. McKeithan, and G. T. Schumock, “Economic considerations in Alzheimer’s disease,” Pharmacotherapy, vol. 18, no. 2, pp. 68-73, 1998.
    [26] S. Marquis, M. M. Moore, D. B. Howieson, G. Sexton, H. Payami, J. A. Kaye, and R. Camicioli, “Independent predictors of cognitive decline in healthy elderly persons,” Archives of Neurology, vol. 59, no. 4, pp. 601-606, 2002.
    [27] H. B. Menz, M. D. Latt, A. Tiedemann, M. M. S. Kwan, and S. R. Lord, “Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people,” Gait & Posture, vol. 20, no. 1, pp. 20-25, 2004.
    [28] D. Maquet, F. Lekeu, E. Warzee, S. Gillain, V. Wojtasik, E. Salmon, J. Petermans, and J. L. Croisier, “Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer’s disease: Simple versus dual-task: A preliminary report,” Clinical Physiology and Nuclear Medicine, vol. 30, no. 1, pp. 51-56, 2010.
    [29] S. W. Muir, M. Speechley, J. Wells, M. Borrie, K. Gopaul, and M. Montero-Odasso, “Gait assessment in mild cognitive impairment and Alzheimer’s disease: The effect of dual-task challenges across the cognitive spectrum,” Gait & Posture, vol. 35, no. 1, pp. 96-100, 2012.
    [30] M. C. Nevitt, S. R. Cummings, S. Kidd, and D. Black, “Risk factors for recurrent nonsyncopal falls,” Journal of American Medical Association, vol. 261, no. 18, pp. 2663-2668, 1989.
    [31] T. Nakamura, K. Meguro, and H. Sasaki, “Relationship between falls and stride length variability in senile dementia of the Alzheimer type,” Gerontology, vol. 42, no. 2, pp. 108-113, 1996.
    [32] T. Nakamura, K. Meguro, H. Yamazaki, H. Okuzumi, A. Tanaka, A. Horikawa, K. Yamaguchi, N. Katsuyama, M. Nakano, H. Arai, and H. Sasaki, “Postural and gait disturbance correlated with decreased frontal cerebral blood flow in Alzheimer disease,” Alzheimer Dis. Assoc. Disord., vol. 11, no. 3, pp. 132-139, 1997.
    [33] L. E. Norton, P. F. Malloy, and S. Salloway, “The impact of behavioral symptoms on activities of daily living in patients with dementia,” American Journal of Geriatric Psychiatry, vol. 9, no. 1, pp. 41-48, 2001.
    [34] N. K. Nadkarni, E. Mawji, W. E. McIlroy, and S. E. Black, “Spatial and temporal gait parameters in Alzheimer’s disease and aging,” Gait & Posture, vol. 30, no. 4, pp. 452-454, 2009.
    [35] M. Montero-Odasso, H. Bergman, N. A. Phillips, C. H. Wong, N. Sourial, and H. Chertkow, “Dual-tasking and gait in people with mild cognitive impairment. The effect of working memory,” BMC Geriatrics, vol. 9, no. 41, pp. 1-8, 2009.
    [36] P. Pudil, J. Novovicova, and J. Kittler, “Floating search methods in feature selection,” Pattern Recognition Letters, vol. 15, no. 11, pp. 1119-1125, 1994.
    [37] R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Archives of Neurology, vol. 58, no. 12, pp. 1985-1992, 2001.
    [38] A. F. Pettersson, E. Olsson, and L. O. Wahlund, “Motor function in subjects with mild cognitive impairment and early Alzheimer’s disease,” Dementia and Geriatric Cognitive Disorders, vol. 19, no. 5-6, pp. 299-304, 2005.
    [39] J. Perry and J. M. Burnfield, Gait Analysis: Normal and Pathological Function, 2nd ed., Slack Incorporated, NJ, 2010.
    [40] A. L. Rue, B. Hermann, J. E. Jones, S. Johnson, S. Asthana, and M. A. Sager, “Effect of parental family history of Alzheimer’s disease on serial position profiles,” Alzheimer’s & Dementia, vol. 4, no. 4, pp. 285-290, 2008.
    [41] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, no. 1, pp. 109-118, 1990.
    [42] P. L. Sheridan, J. Solomont, N. Kowall, and J. M. Hausdorff, “Influence of executive function on locomotor function: Divided attention increases gait variability in Alzheimer's disease,” Journal of the American Geriatrics Society, vol. 51, no. 11, pp. 1633-1637, 2003.
    [43] A. M. Sabatini, C. Martelloni, S. Scapellato, and F. Cavallo, “Assessment of walking features from foot inertial sensing,” IEEE Trans. Biomedical Engineering, vol. 52, no. 3, pp. 486-494, 2005.
    [44] S. Springer, N. Giladi, C. Peretz, G. Yogev, E. S. Simon, and J. M. Hausdorff, “Dual-tasking effects on gait variability: The role of aging, falls, and executive function,” Movement Disorders, vol. 21, no. 7, pp. 950-957, 2006.
    [45] A. H. Snijders, C. C. Verstappen, M. Munneke, and B. R. Bloem, “Assessing the interplay between cognition and gait in the clinical setting,” Journal of Neural Transmission, vol. 114, no. 10, pp. 1315-1321, 2007.
    [46] Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Measurement Science & Technology, vol. 18, no. 7, pp. 1897-1907, 2007.
    [47] G. Yogev-Seligmann, J. M. Hausdorff, and N. Giladi, “The role of executive function and attention in gait,” Movement Disorders, vol. 23, no. 3, pp. 329-342, 2008.
    [48] E. L. Teng, K. Hasegawa, A. Homma, Y. Imai, E. Larson, A. Graves, K. Sugimoto, T. Yamaguchi, H. Sasaki, D. Chiu, and L. R. White, “The cognitive abilities screening instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia,” International Psychogeriatrics, vol. 6, no. 1, pp. 45-58, 1994.
    [49] L. M. Waite, G. A. Broe, D. A. Grayson, and H. Creasrey, “Motor function and disability in the dementias,” International Journal of Geriatric Psychiatry, vol. 15, no. 10, pp. 897-903, 2000.
    [50] M. Woollacott and A. Shumway-Cook, “Attention and the control of posture and gait: A review of an emerging area of research,” Gait & Posture, vol. 16, no. 1, pp. 1-14, 2002.
    [51] K. E. Webster, J. E. Wittwer, and J. A. Feller, “Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait,” Gait & Posture, vol. 22, no. 4, pp. 317-321, 2005.
    [52] K. E. Webster, J. R. Merory, and J. E. Wittwer, “Gait variability in community dwelling adults with Alzheimer disease,” Alzheimer Dis. Assoc. Disord., vol. 20, no. 1, pp. 37-40, 2006.
    [53] J. E. Wittwer, K. E. Webster, P. T. Andrews, and H. B. Menz, “Test-retest reliability of spatial and temporal gait parameters of people with Alzheimer’s disease,” Gait & Posture, vol. 28, no. 3, pp. 392-396, 2008.
    [54] Y. Wang, L. Li, J. Ni, and S. Huang, “Feature selection using tabu search with long-term memories and probabilistic neural networks,” Pattern Recognition Letters, vol. 30, no. 7, pp. 661-670, 2009.
    [55] J. S. Wang, Y. L. Hsu, and J. N. Liu, “An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3508-3521, 2010.
    [56] J. E. Wittwer, K. E. Webster, and H. B. Menz, “A longitudinal study of measures of walking in people with Alzheimer’s disease,” Gait & Posture, vol. 32, no. 1, pp. 113-117, 2010.
    [57] M. J. Yang, H. R. Zheng, H. Y. Wang, S. Mcclean, and N. Harris, “Combining feature ranking with PCA: An application to gait analysis,” in Proc. of the Ninth International Conf. on Machine Learning and Cybernetic, 2010, pp. 494-499.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE