簡易檢索 / 詳目顯示

研究生: 張香棨
Chang, Shiang-Chi
論文名稱: 成長核殼式n型及p型氮化鎵奈米柱用於發光二極體元件之製作
Growth of Core-Shell n-type/p-type Gallium Nitride Nanorods by PECVD for Light-Emitting Diode Applications
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 電漿輔助化學氣相沉積氮化鎵奈米柱核殼式結構p-n接面發光二極體電致發光
外文關鍵詞: plasma-enhanced chemical vapor deposition, gallium nitride, nanorods, core-shell structure, p-n junction, electroluminescence
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  氮化鎵由於其極佳之光電材料特性常被用於製作發光二極體、雷射二極體、太陽能電池、光感測元件、高功率電晶體以及高載子遷移率電晶體。一維奈米結構具有高深寬比及高比表面積幫助釋放晶格不匹配所形成之應力,且奈米柱結構能避免傳統薄膜型龜裂之問題,故本實驗室以自行開發之爐管型電漿輔助化學氣相沉積設備成長一維氮化鎵奈米柱作為製作發光二極體之用。而一維氮化鎵奈米柱也因高比表面積之特性,為表面缺陷及發光效率所苦,因此本研究以核殼式結構成長氮化鎵奈米柱希望能有效改善前述問題。
      沿用先前本實驗室之經驗,於矽基板上成長高品質之氮化鎵奈米柱,並分別以矽、鎂作為摻雜雜質使氮化鎵具有n型及p型特性。針對p型氮化鎵之摻雜濃度作提升,調控鎂來源之蒸氣壓以增加或減少摻雜濃度,利用光致螢光光譜之訊號強度與摻雜濃度之正比關係判斷以取得相對最高摻雜濃度。第二階段成長殼層式n型氮化鎵時,為使晶體沿著預先成長之p型氮化鎵成長,需降低氮化鎵再成核之機會,透過提高反應區溫度、降低鎵來源蒸氣壓、減少反應區鎵金屬之過飽和度及降低反應壓力,我們能夠透過SEM觀察到第二階段成長情況,由原本大量的再成核現象逐漸轉為沿著預先成長之p型氮化鎵奈米柱成長。
      將成長完成之氮化鎵奈米柱製作成為發光二極體元件,量測元件之電流-電壓曲線可以觀察到元件具整流特性。當電流密度上升高於80mA/mm2後逐漸能以肉眼觀察到發光現象,且隨著電壓及電流密度持續上升亮度也隨之提升。表示核殼式結構確實有助於改善效率問題,並幫助氮化鎵奈米柱元件達成電致發光。

    Owing to the significant optoelectronic property, GaN is used for light emitting diodes, laser diodes, sensors and high mobility transistor. Since 1-D nano-structure has the advantage of high aspect ratio and high specific surface area which help releases the stress comparing to film structure, 1-D structure seems like the choice for light emitting diode devices. We combined the two elements mentioned above, GaN and 1-D nano-structure, and fabricated GaN nano-rods for light emitting diode devices with the self-developed PECVD reactor. However, 1-D nano-structure is having the disadvantage of high surface defect density and low recombination efficiency due to its high specific surface area. We hope to avoid the unwanted surface defect by fabricating the nano-rods into core-shell structure.
    Due to the experience from our former team members, we are able to fabricate high quality GaN nano-rods on silicon substrates. We chose silane and Magnesium nitride as the doping source, dope silicon and magnesium in respect into n-type and p-type GaN. Focusing on the doping concentration in p-type GaN, we controlled the amount of magnesium by adjusting the Magnesium nitride vapor pressure so that we can achieve different concentrations of Magnesium being brought into the reacting area. Then we make use of the relationship between Photoluminescence intensity and doping concentration to get the relatively higher doping concentration for p-type GaN.
    In second stage of growth, we want the n-type GaN to grow along the crystal of pre-grown p-type GaN. We lowered the opportunity of re-nucleation which usually took place on top of the pre-grown sample by rising the temperature of the reacting area, lowering the amount of Gallium source and lowering the reacting pressure. We observed through SEM image and found that the re-nucleation situation gradually disappeared, and the n-type from second stage of growth had started to grow along the pre-grown sample.
    The samples with p-n junction were made into light emitting devices, and the rectifying I-V curves confirmed the existence of p-n junction. Once the current density reached 80mA/mm2, electroluminescence is observed. As the current density increase, the violet light became brighter. Core-shell structure did helped improved the efficiency in fabricating light emitting diodes, and led to electroluminescence.

    目錄 中文摘要 I 英文摘要 III 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1前言 1 1-2 奈米材料 3 1-3 研究動機 5 第二章 理論基礎與文獻回顧 7 2-1 氮化鎵之特性 7 2-1-1 氮化鎵之結構 8 2-1-2 氮化鎵之基本性質 9 2-1-3 成長氮化鎵之基板 12 2-1-4 n型氮化鎵 15 2-1-5 p型氮化鎵 16 2-2 一維氮化鎵奈米結構之成長 18 2-2-1 自組裝成長氮化鎵奈米柱 20 2-3 p-n接面 22 2-4 電漿理論 24 2-4-1 電漿定義與特性 24 2-4-2 電漿定義與特性 30 第三章 實驗步驟與方法 33 3-1實驗流程 33 3-2 實驗設備 34 3-2-1 爐管型電漿輔助化學氣相沉積 34 3-2-2 三段加熱區間高溫爐 36 3-2-3 石英管反應腔體 36 3-2-4 氧化鋁材料 37 3-2-5 電漿電源供應器 37 3-2-6 抽氣及真空系統 37 3-2-7 壓力監控系統 38 3-2-8 流量控制系統 38 3-2 實驗材料 39 3-3-1 實驗氣體 39 3-3-2 基板材料 39 3-3-3 真空管件材料 40 3-3-4 金屬遮罩 40 3-3-5 化學藥品 40 3-4 實驗步驟 41 3-4-1  成長氮化鎵奈米柱 41 3-4-2  氮化鎵二極體元件製作 46 3-5 實驗分析 47 3-5-1 掃描式電子顯微鏡 47 3-5-2 能量散佈分析儀 49 3-5-3 光致螢光光譜儀 50 3-5-4 電性量測系統 51 第四章 結果與討論 52 4-1 成長低密度高品質本質氮化鎵晶體 52 4-2 成長p型氮化鎵於矽基板上 55 4-3 兩階段成長氮化鎵奈米柱 60 4-3-1 絕緣層之製作 61 4-3-2 兩段式成長未摻雜氮化鎵 63 4-3-3 第二階段成長之n型氮化鎵 66 4-4 以核殼式結構氮化鎵奈米柱製作發光二極體元件 73 4-4-1 發光二極體之元件製作 73 4-4-2 核殼式氮化鎵發光二極體元件之電性量測 76 4-5 本章結語 82 第五章 結論與未來展望 83 5-1 結論 83 5-2 未來展望 85 參考文獻 87

    [1] http://www.eia.gov/tools/faqs/faq.cfm?id=99&t=3
    [2]http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/energysavingsforecast14.pdf
    [3]http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/lca_factsheet_apr2013.pdf
    [4] S. Porowski, “Growth and properties of single crystalline GaN substrates and homoepitaxial layers,“ Materials science & engineering. B, Solid-state materials for advanced technology, vol. B44, pp. 407-413, 1997.
    [5] http://www.edma.org.tw/doc/Magazine_20-1-3.pdf
    [6] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN and SiGe. New York: John Wiley and Sons, 2001.
    [7] J. H. Edgar, Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC, 1999.
    [8] D. I. Florescu, V. M Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., “Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire(0001) by scanning thermal microscopy,” Applied Physics Letters, vol. 77, pp.1464-1466, 2000.
    [9] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., “Nanoindentation of epitaxial GaN films,” Appied Physics Letter, vol. 77, pp. 3373-3375, 2000
    [10] H. Morkoc, Nitride Semiconductors and Devices. Berlin: Springer-Verlag, 1999
    [11] Nakamura S. GaN growth using GaN buffer layer. Japanese Journal of Applied Physics. 1991;30:L1705.
    [12] Calarco R, Marso M, Richter T, Aykanat AI, Meijers R, vd Hart A, et al. Size- dependent photoconductivity in MBE-grown GaN-naowires. Nano letters. 2005;5:981-4.
    [13] Sanford N, Blanchard P, Bertness K, Mansfield L, Schlager J, Sanders A, et al. Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy. Journal of Applied Physics. 2010;107:034318.
    [14] Li D, Ma B, Miyagawa R, Hu W, Nakamura M, Miyake H, et al. Photoluminescence study of Si-doped a-plane GaN grown by MOVPE. Journal of Crystal Growth. 2009;311:2906-9.
    [15] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride Nanowire Nanodevices,” Nano Letters, vol. 2, pp. 101-104, 2002.
    [16] E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, et al., “Modification of GaN(0001) growth kinetics by Mg doping, “Applied Physics Letters, vol. 84, pp.2554-2556, Apr 2004.
    [17] H. Amono, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Japanese Journal of Applied Physics, vol. 28, pp. L2112-2114, 1989.
    [18] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of p-type GaN Films”, Japanese Journal of Applied Physics, vol. 31, pp. 1258-1266, 1992.
    [19] E. Cimpoiasu, E. Stern, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology, vol. 17, pp. 5735-5739, Dec 2006.
    [20] G. S. Cheng, A. Kolmakov , Y. X. Zhang, M. Moskovits, R. Munden, M. A. Reed, et al.,” Current rectification in a single GaN nanowire with a well-defined p-n junction,” Applied Physics Letters, vo. 83, pp. 1578-1580, Aug2003.
    [21] Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Letters, vol. 3, pp. 343-346, Mar 2003.
    [22] J. R. Soulen, P. Sthapitanonda, and J. L. Margrave, “Vaporization of inorganic substances: B2O3, TeO2 and Mg3N2,” Journal of Physical Chemistry, vol. 59, pp.132-136, 1955.
    [23] D. Zubia and S. D. Hersee, “Nanoheteraepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” Journal of Applied Physics, vol. 85, pp. 6492-6496, 1999.
    [24] A. Waag, X. Wang, S. Fundling, J. Ledig, M.Erenburg, R. Neumann, et al., “The nanorod approach: GaN NanoLEDs for solid state lighting,” Physica Status Solidi (C) Current Topic in Solid State Physics, vol. 8, pp. 2296-2301, 2011.
    [25] S. Li and A. Waag, “GaN based nanorods for solid state lighting,” Journal of Applied Physics, vol. 111, p. 0771101, 2012.
    [26] J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., “On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy,” Journal of Crystal Growth, vol. 310, pp. 4035-4045, 2008.
    [27] M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, et al., “Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(111),” Journal of Crystal Growth, vol. 183, pp.23-30, 1998.
    [28] R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, “Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111),” Applied Physics Letters, vol. 90, p. 123117, 2007.
    [29] K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Nucleation conditions for catalyst-free GaN nanowires,” Journal of Crystal Growth, vol. 300, pp. 94-99, 2007.
    [30] J. R. Roth, Industrial plasma engineering-Volume 1: Principles Institution of Physics. Bristol and Philadelphia: Institution of Physics Publishing, 1995.
    [31]https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap12/chap12.htm
    [32] 汪建民,材料分析,中國材料科學學會,新竹市,頁別,2009
    [33] http://serc.carleton.edu /research_education/geochemsheets/
    electroninteractions.html
    [34] S. Y. Lim, M. Forster, X. Zhang, J. Holtkamp, M. C. Schubert, A. Cuevas, and D. Macdonald, “Applications of Photoluminescence Imaging to Dopant and Carrier Concentration Measurements of Silicon Wafers”, IEEE Journal of Photovoltaics, vol. 3, no. 2, pp. 649-655, April 2013
    [35] 吳東憲, 以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用, 國立成功大學化工系博士論文, 民國101年
    [36] 李訓廷, 成長高品質低密度之n形氮化鎵微米柱用於光電元件, 國立成功大學化工系博士論文, 民國103年
    [37] https://en.wikipedia.org/wiki/Silane
    [38]http://pub.tust.edu.tw/mechanic/mclab/public_html/_private/electronics/diode/junction.htm

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE