簡易檢索 / 詳目顯示

研究生: 陳思瑜
Chen, Sih-Yu
論文名稱: 大腸直腸癌中細胞核內TYRO3功能之探討
Functional characterization of nuclear TYRO3 in colorectal cancer
指導教授: 蔡少正
Tsai, Shaw-Jenq
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 53
中文關鍵詞: 大腸直腸癌TYRO3受體酪胺酸激酶入核機制
外文關鍵詞: colorectal cancer, TYRO3, receptor tyrosine kinase, nuclear translocation
相關次數: 點閱:120下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腸直腸癌是全世界普遍發生且高致死率的癌症,而大腸直腸癌的發生大部分都跟基因異常表現有關。過去實驗室透過生物資訊的方式,從大腸直腸癌細胞中找到新穎致癌基因TYRO3,也證實TYRO3能促使細胞增生、轉移以及整個腫瘤的進程。TYRO3是一種酪胺酸激酶,也是TAM (TYRO3、AXL、MER)家族的成員。根據大腸直腸腫瘤切片的免疫組織染色結果,發現TYRO3不僅在細胞膜表現外,在細胞核內也能觀察到TYRO3的存在,而且細胞核內TYRO3的表現程度跟腫瘤的進程是呈現正相關。因此,我們認為細胞核內TYRO3或許在腫瘤進程中扮演重要的角色,在此我們致力於探討大腸直腸癌細胞中細胞核內TYRO3的功能。我們從生物資訊工具比對出TYRO3擁有核定位訊號 (NLS)及出核訊號 (NES)的序列,為了探討細胞核內TYRO3的重要性,我們將TYRO3上的核定位序列突變使得TYRO3無法進入細胞核,接著進行細胞的功能測定,例如:細胞凋亡及細胞增生。實驗結果發現TYRO3無法入核的情況下,細胞凋亡的情形增加且能偵測到較多凋亡蛋白酶3 (caspase-3)表現,和正常的TYRO3功能相反。因此,我們得知細胞核內TYRO3的存在對於細胞存活是重要的。BrdU標定實驗結果顯示當大腸癌細胞過度表現NLS突變的TYRO3,其細胞增生受到抑制。我們進一步探討細胞核內TYRO3的功能,我們使TYRO3上的NES序列突變讓TYRO3不被送出細胞核外進而保留在細胞核內,再進行上述的功能測定。從BrdU標定實驗的結果得知,NES突變的TYRO3和正常的TYRO3皆能促進細胞增生。因此細胞核內TYRO3不僅和細胞存活有關,也能促進大腸癌細胞的增生。酪胺酸激酶受體大部分是藉由本身的激酶活性去磷酸化下游的受質,進而執行訊息的傳遞;為了釐清TYRO3激酶活性對於核內TYRO3執行功能是否重要,我們將TYRO3的激酶活性區進行突變,接著執行上述所提到的細胞凋亡及增生情形的偵測。實驗結果顯示細胞核內TYRO3的功能表現是需要激酶活性來驅動。另外,TYRO3的入核機制也是我們進一步要去探討的問題,讓細胞過度表現TYRO3後,利用三種辨認TYRO3上不同抗原的抗體(N端、中間區域、C端)進行免疫螢光染色,發現在細胞核內只有辨認C端的抗體能偵測到TYRO3,而N端則辨認到分布在細胞膜上的蛋白。根據上述染色結果,我們認為TYRO3有可能透過蛋白酶切割成片段後,C端的TYRO3才進入細胞核內。我們利用生物資訊工具進行預測,預測到在TYRO3序列上有類似基質金屬蛋白酶2(MMP-2)的切位,我們收集過度表現TYRO3的細胞且進行細胞外MMP-2降解的實驗,結果發現TYRO3的確能被MMP-2所切割成片段;而在TYRO3上突變MMP-2切割位置,螢光免疫染色結果發現細胞核內沒有TYRO3的表現。根據以上的實驗結果,TYRO3首次被證實能透過MMP-2切割而進入到細胞核,進而執行抗細胞凋亡及促進細胞增生的功能,因此,未來核內TYRO3能作為一個標靶分子以成為另一個對抗癌症的策略。

    Colorectal cancer is one of the most common death-related cancers worldwide. Aberrant expression of oncogenes is regarded as a predominant factor in colorectal cancer development. Our previous study discovered TYRO3, an oncogene overexpressed in colorectal cancer, promotes cell proliferation, metastasis, and tumor progression. TYRO3 belongs to TAM (TYRO3, AXL, and MER) family, which is a subfamily of receptor tyrosine kinases. According to data from immunohistochemistry staining, we found TYRO3 locates in nuclei and the levels of nuclear TYRO3 are positively associated with tumor progression. Herein, we aim to study the functions of nuclear TYRO3 in cancer development. By staining with three different antibodies recognizing N-terminus, central region, and C-terminus of TYRO3, respectively, we identified that central and C-terminus of TYRO3 are the fragments translocated into the nuclei. By bioinformatics tool prediction, we found there are a nuclear localization signal (NLS) and a nuclear export signal (NES) in TYRO3. These results suggest TYRO3 is probably transported into nucleus through proteolytic processing. To evaluate the importance of nuclear translocation of TYRO3, NLS of TYRO3 was mutated. Then mutated NLS of TYRO3 was used to perform several functional studies, such as apoptosis and cell proliferation. The results showed TYRO3 was only detected in cytosol but not in nucleus under NLS mutation, accompanied with increased numbers of apoptotic cells and activated-caspase 3 protein. These data suggest that nuclear translocation of TYRO3 is essential for cell survival. BrdU incorporation assay revealed that proliferation of cancer cells overexpressing mNLS-TYRO3 was suppressed as well. To further investigate the functions of nuclear TYRO3, we established NES mutation in TYRO3, which allows TYRO3 retaining in nucleus, and performed the above-mentioned assays. We found transfection with NES mutated TYRO3 also increased cell proliferation similar to that seen in cells transfected with wild-type TYRO3. Furthermore, we also proved that promoting cell growth by nuclear TYRO3 requires its kinase activity. These findings imply nuclear TYRO3 plays some roles in cell survival and proliferation in colon cancer. By sequencing analyzing using protease database, we found TYRO3 has a matrix metalloproteinase 2 (MMP2) cutting site at upstream of NLS sequence. The MMP2 in vitro digestion assay demonstrated that TYRO3 can be cleaved by MMP2. In addition, we observed TYRO3 did not locate in nucleus under MMP2 cleavage site mutation. Taken together, we demonstrated, for the first time, that TYRO3 is translocated into nucleus through MMP2 cleavage to exert anti-apoptotic and pro-proliferative functions, which provides an alternative strategy to target nuclear translocation of TYRO3 for colon cancer therapy.

    Introduction 1 Human colorectal cancer (CRC) 1 Receptor tyrosine kinase in cancer 2 TAM family in cancers 4 TYRO3 5 The role of nuclear receptor tyrosine kinases in nucleus 6 The finding of TAM family in nucleus 8 Objective and Specific Aims 8 Materials and Methods 9 Results 15 TYRO3 is expressed in nucleus of colorectal cancer cells 15 Nuclear translocation of TYRO3 is essential for cell survival 15 Mutation of NLS in TYRO3 or abolishment of kinase activity resulted in suppressing cell proliferation 16 Cell proliferation is increased underlying TYRO3 overexpression as well as nuclear TYRO3 retention 17 Proteolytic cleavage is probably a mechanism for nuclear translocation of TYRO3 18 Truncated TYRO3 mimics nuclear form and promotes cell proliferation 19 Discussion 21 References 25 Appendix 47

    1. Weitz, J., et al., Colorectal cancer. The Lancet, 2005. 365(9454): p. 153-165.
    2. Erreni, M., A. Mantovani, and P. Allavena, Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenvironment, 2011. 4(2): p. 141-154.
    3. Lynch, H.T. and A. de la Chapelle, Hereditary Colorectal Cancer. New England Journal of Medicine, 2003. 348(10): p. 919-932.
    4. Rustgi, A.K., The genetics of hereditary colon cancer. Genes & Development, 2007. 21(20): p. 2525-2538.
    5. Gupta, J., et al., Dual Function of p38 alpha MAPK in Colon Cancer: Suppression of Colitis-Associated Tumor Initiation but Requirement for Cancer Cell Survival. Cancer Cell, 2014. 25(4): p. 484-500.
    6. Calvert, P.M. and H. Frucht, The genetics of colorectal cancer. Annals of Internal Medicine, 2002. 137(7): p. 603-612.
    7. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-767.
    8. Jass, J.R., et al., Emerging concepts in colorectal neoplasia. Gastroenterology, 2002. 123(3): p. 862-876.
    9. Kressner, U., et al., Prognostic Value of p53 Genetic Changes in Colorectal Cancer. Journal of Clinical Oncology, 1999. 17(2): p. 593-593.
    10. Molina, J.R. and A.A. Adjei, The Ras/Raf/MAPK Pathway. Journal of Thoracic Oncology, 2006. 1(1): p. 7-9.
    11. Takayama , T., et al., Aberrant Crypt Foci of the Colon as Precursors of Adenoma and Cancer. New England Journal of Medicine, 1998. 339(18): p. 1277-1284.
    12. Lemmon, M.A. and J. Schlessinger, Cell Signaling by Receptor Tyrosine Kinases. Cell, 2010. 141(7): p. 1117-1134.
    13. Templeton, A.J., et al., Prognostic relevance of receptor tyrosine kinase expression in breast cancer: A meta-analysis. Cancer Treatment Reviews, 2014. 40(9): p. 1048-1055.
    14. Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature, 2001. 411(6835): p. 355-365.
    15. Normanno, N., et al., Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006. 366(1): p. 2-16.
    16. Abd El-Rehim, D.M., et al., Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. British Journal of Cancer, 2004. 91(8): p. 1532-1542.
    17. Normanno, N., et al., Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocrine-Related Cancer, 2003. 10(1): p. 1-21.
    18. Bundred, N.J., K. Chan, and N.G. Anderson, Studies of epidermal growth factor receptor inhibition in breast cancer. Endocrine-Related Cancer, 2001. 8(3): p. 183-9.
    19. Prenzel, N., et al., The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocrine-Related Cancer, 2001. 8(1): p. 11-31.
    20. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer, 2007. 7(3): p. 169-181.
    21. Vlahovic, G. and J. Crawford, Activation of Tyrosine Kinases in Cancer. The Oncologist, 2003. 8(6): p. 531-538.
    22. Linger, R.M.A., et al., TAM Receptor Tyrosine Kinases: Biologic Functions, Signaling, and Potential Therapeutic Targeting in Human Cancer, in Advances in Cancer Research. 2008, Academic Press. p. 35-83.
    23. Behrens, C., et al., Immunohistochemical Expression of Basic Fibroblast Growth Factor and Fibroblast Growth Factor Receptors 1 and 2 in the Pathogenesis of Lung Cancer. Clinical Cancer Research, 2008. 14(19): p. 6014-6022.
    24. Organ, S.L. and M.-S. Tsao, An overview of the c-MET signaling pathway. Therapeutic Advances in Medical Oncology, 2011. 3(1 Suppl): p. S7-S19.
    25. Shibuya, M., Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes & Cancer, 2011. 2(12): p. 1097-1105.
    26. Linger, R.M., et al., TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Advances in Cancer Research, 2008. 100: p. 35-83.
    27. Lai, C. and G. Lemke, An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron, 1991. 6(5): p. 691-704.
    28. Nagata, K., et al., Identification of the Product of Growth Arrest-specific Gene 6 as a Common Ligand for Axl, Sky, and Mer Receptor Tyrosine Kinases. Journal of Biological Chemistry, 1996. 271(47): p. 30022-30027.
    29. Stitt, T.N., et al., The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell, 1995. 80(4): p. 661-70.
    30. Schmidt, T., et al., Macrophage–tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cellular and Molecular Life Sciences, 2012. 69(9): p. 1391-1414.
    31. Song, X., et al., Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer, 2011. 117(4): p. 734-743.
    32. Lemke, G., Biology of the TAM Receptors. Cold Spring Harbor Perspectives in Biology, 2013. 5(11): p. a009076.
    33. Craven, R.J., et al., Receptor tyrosine kinases expressed in metastatic colon cancer. International Journal of Cancer, 1995. 60(6): p. 791-7.
    34. Bosurgi, L., et al., Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc Natl Acad Sci U S A, 2013. 110(32): p. 13091-6.
    35. Schmidt, T., et al., Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cellular and Molecular Life Sciences, 2012. 69(9): p. 1391-414.
    36. Biesecker, L.G., L.R. Gottschalk, and S.G. Emerson, Identification of four murine cDNAs encoding putative protein kinases from primitive embryonic stem cells differentiated in vitro. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7044-8.
    37. van der Meer, J.H.M., T. van der Poll, and C. van ‘t Veer, TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood, 2014. 123(16): p. 2460-2469.
    38. Lemke, G. and Q. Lu, Macrophage regulation by Tyro 3 family receptors. Current Opinion in Immunology, 2003. 15(1): p. 31-36.
    39. Pierce, A.M. and A.K. Keating, TAM receptor tyrosine kinases: Expression, disease and oncogenesis in the central nervous system. Brain research, 2014. 1542: p. 206-220.
    40. De Vos, J., et al., Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood, 2001. 98(3): p. 771-780.
    41. Avilla, E., et al., Activation of TYRO3/AXL Tyrosine Kinase Receptors in Thyroid Cancer. Cancer Research, 2011. 71(5): p. 1792-1804.
    42. Zhu, S., et al., A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proceedings of the National Academy of Sciences, 2009. 106(40): p. 17025-17030.
    43. Lai, C., M. Gore, and G. Lemke, Structure, expression, and activity of Tyro 3, a neural adhesion-related receptor tyrosine kinase. Oncogene, 1994. 9(9): p. 2567-2578.
    44. Crosier, P.S., et al., Identification of a Novel Receptor Tyrosine Kinase Expressed in Acute Myeloid Leukemic Blasts. Leukemia & Lymphoma, 1995. 18(5-6): p. 443-449.
    45. Chien, C.W., et al., Targeting TYRO3 inhibits epithelial-mesenchymal transition and increases drug sensitivity in colon cancer. Oncogene, 2016.
    46. Chen, M.-K. and M.-C. Hung, Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS Journal, 2015. 282(19): p. 3693-3721.
    47. Keefe, D.M.K. and E.H. Bateman, Tumor control versus adverse events with targeted anticancer therapies. Nature Reviews Clinical Oncology, 2012. 9(2): p. 98-109.
    48. Volinsky, N. and B.N. Kholodenko, Complexity of Receptor Tyrosine Kinase Signal Processing. Cold Spring Harbor Perspectives in Biology, 2013. 5(8).
    49. Carpenter, G. and H.-J. Liao, Receptor Tyrosine Kinases in the Nucleus. Cold Spring Harbor Perspectives in Biology, 2013. 5(10).
    50. Wang, Y.-N. and M.-C. Hung, Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell & Bioscience, 2012. 2(1): p. 1-10.
    51. Liccardi, G., J.A. Hartley, and D. Hochhauser, EGFR Nuclear Translocation Modulates DNA Repair following Cisplatin and Ionizing Radiation Treatment. Cancer Research, 2011. 71(3): p. 1103-1114.
    52. Kuo, H.-Y., et al., PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle, 2014. 13(19): p. 3132-3142.
    53. Wang, Y.-N., et al., COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochemical and Biophysical Research Communications, 2010. 399(4): p. 498-504.
    54. Hadzisejdic, I., et al., Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Modern Pathology, 2010. 23(3): p. 392-403.
    55. Huang, W.-C., et al., Nuclear Translocation of Epidermal Growth Factor Receptor by Akt-dependent Phosphorylation Enhances Breast Cancer-resistant Protein Expression in Gefitinib-resistant Cells. Journal of Biological Chemistry, 2011. 286(23): p. 20558-20568.
    56. Lin, S.-Y., et al., Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biology, 2001. 3(9): p. 802-808.
    57. Chioni, A.-M. and R. Grose, FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. The Journal of Cell Biology, 2012. 197(6): p. 801-817.
    58. Migdall-Wilson, J., et al., Prolonged Exposure to a Mer Ligand in Leukemia: Gas6 Favors Expression of a Partial Mer Glycoform and Reveals a Novel Role for Mer in the Nucleus. PLOS ONE, 2012. 7(2): p. e31635.
    59. Chien, C.W., et al., Targeting TYRO3 inhibits epithelial-mesenchymal transition and increases drug sensitivity in colon cancer. Oncogene, 2016. 35(45): p. 5872-5881.
    60. Chien, C.W. and S.J. Tsai, The functional role of TYRO3 in colorectal cancer development and progression. (Doctoral dissertation). 2015.
    61. Bressenot, A., et al., Assessment of Apoptosis by Immunohistochemistry to Active Caspase-3, Active Caspase-7, or Cleaved PARP in Monolayer Cells and Spheroid and Subcutaneous Xenografts of Human Carcinoma. Journal of Histochemistry and Cytochemistry, 2009. 57(4): p. 289-300.
    62. Li, C., et al., Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene, 2009. 28(43): p. 3801-3813.
    63. Wheeler, D.L., et al., Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene, 2008. 27(28): p. 3944-3956.
    64. Lo, H.W. and M.C. Hung, Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer, 2006. 94(2): p. 184-188.
    65. Carpenter, G. and H.-J. Liao, Trafficking of receptor tyrosine kinases to the nucleus. Experimental Cell Research, 2009. 315(9): p. 1556-1566

    無法下載圖示 校內:2022-01-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE