| 研究生: |
方瑋琦 fung, wei-chi |
|---|---|
| 論文名稱: |
燃料電池電堆的實驗與數值模擬研究 Experiment and Numerical Simulation of a Small PEMFC Stack |
| 指導教授: |
溫志湧
wen, chih-yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 質子交換膜燃料電池 、數值模擬 、全模組電堆 |
| 外文關鍵詞: | PEM fuel cell, Numerical analysis, Full-size stack |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以實驗及數值方法探討質子交換膜燃料電池單電池及小型雙電池電堆的物理特性,針對質子交換膜燃料電池堆系統建立三維全模組單電池與二級電堆模型,利用熱流分析軟體CFD-ACE+作為求解器,研究燃料電池內部的電化學現象。研究中以實驗之單電池與二級電堆實驗性能曲線,作為驗證數值模擬準確性的依據。而在數值分析中,使用那維爾-史都克斯方程式(Navier-Stokes equation)作為流場的統御方程式,配合能量、成份守恆與電化學相關方程式,求解燃料電池內之速度、壓力、濃度與電流密度分佈。研究結果顯示數值模擬與實驗結果有相當高的一致性,可為後續之模擬提供一可靠之模型,且在低電壓及高電流時,容易使反應氣體快速消耗,導致電化學反應後半段的燃料不足,在提升電池的性能上,未來可朝此方向去改進探討。藉著單電池與二級電堆全模組模型,可觀察單電池和二級電堆中細部流場現象,此乃實驗難以達成的部份。未來期望能增加電堆組數,求得更詳細的電堆流場物理特性,作為實際電堆設計發展之工程設計依據,以有效降低開發成本與時間,達到輔助設計的功用。
This work is aimed to study the characteristics of a single proton exchange membrane fuel cell (PEMFC) and a small two-cell stack through experiments and numerical simulations. Notably, the three dimensional numerical model used is of full size (97.75 cm2 reaction area/single cell). A commercial computational fluid dynamics software, CFD-ACE+, is used as the solver in this report. The Navier-Stokes equation is coupled with the energy, species, and the electrochemical equations. Therefore, mass, momentum and species transport phenomena as well as the electron- and proton- transfer processes in a PEMFC cell/stack are solved simultaneously. Experimental results of the polarization curves are used to validate the numerical results. Good agreements are observed for both single cell and two-cell stack. The present results show that the electrochemical reaction is faster at low-voltage and high temperature condition, by which leads to the results of fast reduction of the reaction gas and makes fuel deficiency appear around the outlet. These results can be important issues in the real engineering for improving the performance of the fuel cell. Flow phenomena in the full-size fuel cell/stack can be observed by the simulation results which are difficult to be obtained in experiments. The future work is to increase the number of cells in the stack in the numerical simulations and to decrease the computational time for a cost- and time-effective engineering development.
[1] 黃鎮江,“燃料電池”,第三版,滄海書局,2008
[2] J. Larminie, A. Dicks, “Fuel cell systems explained,” Second edition, John Wiley, 2003
[3] T. E. Springer, M. S. Wilson, S. Gottesfeld , “Modeling and experimental diagnostics in polymer electrolyte fuel cells,” Journal of the electrochemical Society, Vol.140, pp.3513-3526, 1993
[4] T. V. Nguyen, R. E. White, “A water and heat management model for proton exchange membrane fuel cells,” Journal of the electrochemical society, vol.140, pp.2178-2186, 1993
[5] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of power source, vol.80, pp.226-234, 1999
[6] E. Modica, V. Antonucci, “Influence of flow field design on the performance of adirect methanol fuel cell,” Journal of power sources, vol.91, pp.202-209, 2000
[7] Z. Qi, A. Kaufman, “Activation of low temperature PEM fuel cells,” Journal of power source, vol.111, pp.181-184, 2002
[8] L. Wang, A. Husar, T. Zhou, H. Liu,“A parametric study of PEM fuel cell performances,” International journal of hydrogen energy, vol.28, pp.1263-1272, 2003
[9] F. Barbir, H. Gorgun, X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells,” Journal of power source, vol.141, pp.96-101, 2005
[10] S. J. Lee, C. D. Hsu, C. H. Huang, Analyses of the fuel cell stack assembly pressure, ”Journal of power source, vol.145, pp.353-361, 2005
[11] C. Y. Wen, Y. S. Lin, C. H. Lu, “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack,” Journal of power sources, vol.192, pp.475-485, 2009
[12] D. M. Bernardi, M. W. Verbrugge, “Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte,”AIChE Journal, vol.37, pp.1151-1163, 1991
[13] Y. Shan, S. Y. Choe, S. H. Choi, “Unsteady 2D PEM fuel modeling for a stack emphasizing thermal effects, ”Journal of power source, vol.165, pp.196-209, 2007
[14] V. Gurau, H. T. Liu, S. Kakac, “Two-dimensional model for protroton exchange membrane fuel cells,” AIChE Journal, vo1.44, pp.2410-2422, 1998
[15] M. Secanell, B. Carnes, A. Suleman, N. Djilali, “Numerical optimization of proton exchange membrane fuel cell cathodes,” Electrochimica acta, vol.52, pp.2668-2682, 2007
[16] C. H. Chen, S. P. Jung, S. C. Yen, “Flow distribution in the manifold of PEM fuel cell stack,” Journal of power source, vol.173, pp.249-263, 2007
[17] S. Shimpalee, S. Greenway, J. W. Van Zee, “The impact of channel path length on PEMFC flow-field design,” Journal of power source, vol.160, pp.398-406, 2006
[18] S. Shimpalee, U. Beuscher, J. W. Van Zee, “Investigation of gas diffusion media inside PEMFC using CFD modeling,” vol.163, pp.480-489, 2006
[19] F. B. Weng, A. Su, G. B. Jung, Y. C. Chiu, S. H. Chan, “Numerical prediction of concentration and current distribution in PEMFC,” Journal of power sources, vol.145, pp.546-554, 2005
[20] T. Berning, N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study,” Journal of power source, vol.124, pp.440-452, 2003
[21] W. M. Yan, H. C. Liu, C. Y. Soong, F. Chan, C. H. Cheng, “Numerical study on cell performance and local transport phenomena of PEM fuel cells with novel flow field designs, ”Journal of Power Sources, vol.161, pp.907-919, 2006
[22] S. Dutta, S. Shimpalee, J. W. Van Zee, “Numerical prediction of mass-exchange between cathode and anode channel in a PEM fuel cell,”vol.44, pp.2029-2042, 2001
[23] S. Y. Kim, W. N. Kim, “Effect of cathode inlet manifold configuration on performance of 10-cell proton-exchange membrane fuel cell, ”Journal of power sources, vol.166, pp.430-434, 2007
[24] G. Karimi, J. J. Baschuk, X. Li, “Performance analysis and optimization of PEM fuel cell stacks using flow network approach, ”Journal of power sources, vol.147, pp.162-177, 2005
[25] Z. Liu, Z. Mao, C. Wang, W. Zhuge, Y. Zhang, “Numerical simulation of mini PEMFC stack,” Journal of power sources, vol.160, pp.1111-1121, 2006
[26] S. Shimpalee, M. Ohashi, J. W. Van Zee, C. Ziegler, C. Stoeckmann, C. Sadeler, C. Hebling,“Experimental and numerical studies of portable PEMFC stack, ”Electrochimica acta, vol.54, pp.2899-2911, 2009
[27] 林育昇,“界面壓力對質子交換膜燃料電池堆之性能影響”,國立成功大學航空太空學系碩士論文,台南,97年7月
[28] http://www.arbin.com/FuelCell/Products/FCTS/PEMFCTS.htm
[29] US fuel cell council, www.usfcc.com, 2008
[30] G. Dagan, “Flow and transport in porous formation, ”Springer-Verlag, 1989
[31] S. Mazumder, J. V. Cole, “Rigorous 3-D mathematical modeling of PEM fuel cells I. model predictions without liquid water transport,” Journal of the electrochemical society, vol.150, pp.A1503-A1509, 2003
[32] D. A. G. Bruggeman, “Calculations of various physical constants of heterogeneous substance:part I, dielectric constants and conductivity of isotropic substance,” Ann. Phys, vol.24, pp.636-699, 1935
[33] R. B. Bird, W. E. Stewart, E. N. Lightfoot, “Transport phenomena,” John Wiley & Sons, 1960
[34] J. P. Doormaal, G. D. Raithby, “Enhancements of the SIMPLE method for predicting Incompressible fluid flows,” Numerical heat transfer, vol.7, pp.147-163, 1984
[35] 吳一鳴,“整合商用CFD軟體及簡易型共軛梯度法進行燃料電池堆之最佳化設計”,國立成功大學航空太空工程學系碩士論文,台南,民國97年7月
[36] R. David, “CRC handbook of chemistry and physics,” CRC Press, 2006