簡易檢索 / 詳目顯示

研究生: 王裕評
Wang, Yu-Ping
論文名稱: 金屬奈米電漿導波管
Metallic Nanoplasmonic Waveguides
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 導波管色散關係金屬導波管表面電漿
外文關鍵詞: Surface plasmon, Waveguide, Metallic waveguide, Dispersion relation
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿(surface plasmon)是經由適當光場激發,使金屬表面自由電子產生集體式電偶極震盪,存在於金屬與介面交界處的電磁波。大部分文獻的討論情形為單一介面結構,本論文探討 金屬--空氣--金屬 及 空氣--金屬--空氣的結構,若經由適當光場激發,其表面電漿波與此結構之間的物理作用,可看成一導波管。對於金屬導波管的討論,先藉由金屬Drude model探討表面電漿的色散特性,接著討論奈米導波管的特性,中間包含基本的PEC平板導波管、介電質平板導波管,和奈米金屬導波管的色散圖形比較,以及模擬其電磁場強度分布,過程利用Mathematica處理繁雜的色散關係及導波管的模態計算,最後改變其幾何結構,利用FDTD模擬出光在金屬導波管中的各種傳導情形,近一步了解光在奈米尺寸下傳播之特性。

    Surface plasmons exist in the interface between the metallic and dielectric medium excited by proper electromagnetic waves, which make free electrons oscillating collectively on the metal surface. Most literatures discussed the surface plasmon modes along a single interface structure. This thesis will discuss more complex and interesting structures consisting of Metal--Air--Metal and Air--Metal--Air interfaces. We first study the basic PEC parallel-plate waveguides and the dielectric waveguides. The intensity distributions of the guiding modes and the dispersion relations for different waveguide sizes are studied. For the metallic waveguides, we use Drude model to describe the dielectric constant of the metal and investigate the dispersion relations for the surface plasmon modes. Mathematica is applied to deal with complex dispersion relations and mode calculations. Finally, we design Y-junction waveguides and utilize FDTD to simulate light propagations in these metallic waveguides. These studies advance our understanding of the characteristics on light transmission and propagation in the nano-scaled structures.

    口試委員會審定書..........................................I 中文摘要.................................................II 英文摘要................................................III 誌謝.....................................................IV 目錄......................................................V 圖目錄...................................................VI 第一章 序論..............................................1 1-1 前言..................................................1 1-2 本文內容..............................................2 第二章 表面電漿簡介......................................3 2-1 表面電漿成因&Drude model..............................3 2-2 表面電漿色散關係推導..................................5 2-3 平行與垂直極化波入射與表面電漿之關係.................16 第三章 PEC平板、介電質平板、及金屬導波管................20 3-1 PEC平板導波管(Perfect Electric Conductor Parallel-Plate waveguide).........................................20 3-2 介電質導波管.........................................28 3-3 金屬導波管...........................................38 3-3-1 金屬導波管色散關係推導.............................38 3-3-2 色散曲線模擬與分析.................................43 第四章 FDTD基本理論介紹................................50 4-1 FDTD基本概念.........................................50 4-2 FDTD演算法...........................................53 4-3 吸收邊界條件(Absorbing Boundary Condition,ABC)......57 第五章 模擬結果及結論探討................................63 5-1 金屬導波管模擬(厚度d=50nm,200nm)....................63 5-2 結論.................................................74 5-3 未來展望.............................................74 參考文獻.................................................76 附錄I....................................................78

    [1].邱國斌,蔡定平,物理雙月刊28卷第二期, pp.472-483, 2006.
    [2].R. H. Ritche, ”Plasma Losses by Fast Electrons in Thin Films,”Phys.Rev.,vol.106,pp. 874, 1957.
    [3].P. Orfanides, M. C. Buncick P. Orfanides, T. F. Buckner
    , and M. C. Buncick, “Demonstration of surface plasmons in metal island films and the effect of the surrounding medium—An undergraduate experiment,” Am. J. Phys. 68(10) , pp. 936-942 , 2000.
    [4].B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye,1, and D. W. Pohl1,“Local Excitation, Scattering, and Interface
    of Surface Plasmons,” Phys. Rev. Lett. Vol 77, Num 9, pp. 1889-1892, 1996.
    [5].E. A. Stern and R. A. Ferrel, “Surface Plasma Oscillations of a Degenerate Electron Gas,” Physical Review, vol.120, pp.130-136, 1960.
    [6].H. Raether, in“Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Physics, Vol. 111, 1988.
    [7].E.Kretschmann,“Die Bestimmung optischer Konstanten von
    Metallen durch Anregung von Oberflachenplasmaschwingungen
    ,” Z.Phys.241, 313, 1971.
    [8].J.J. BURKE, G.I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,”Phys. Rev. vol.33, number8, 1986.
    [9].W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, Aug. 2003.
    [10].吳民耀, 劉威志, 物理雙月刊28卷二期, 486, 2006.
    [11].H. Raether, Surface Plasmons, Springer, New York,120, 1988.
    [12].E. Feigenbaum and M. Orenstein, “Modeling of Complementary (Void) Plasmon Waveguiding,” journal of lightwave technology, vol. 25, NO. 9, 2007.
    [13].A. Taflove,; M. E. Brodwin“Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the T-me-Dependent Maxwell’s Equations,”IEEE Trans.Microwave Theory Tech., MTT-23:623~630, 1975
    [14].G. Mur,“Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations”IEEE Trans. Electromagnetic Compatibility Vol.23,pp.377-382,1981.
    [15].J. P. Berenger, “A perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys., 114(2): 185-200, 1994.
    [16].J. P. Berenger,“Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,”J. Comput. Phys., 127(2):363~379, 1996.
    [17].J. P. Berenger,“Perfectly Matched Layer for the FDTD Solution of Wave Structure Interaction Problems,”IEEE Trans.on Antennas and Propagation, AP-44[1]:110-117, 1996.
    [18].D .S. Katz, E. T. Thiele, and A. Taflove,“Validation and extension to three dimensions of Berenger PML absorbing boundary condition for FDTD meshes, ”IEEE Microwave and Guided Wave Letters, Vol.4, pp. 268-270, 1994.
    [19].U. Fano, “The theory of anomalous diffraction gratings and of quasistationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc.Amer., vol. 31, no. 3, pp.213–222, Mar. 1941.
    [20].R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev., vol. 106, no. 5, pp. 874–881, 1957.
    [21].E. Ozbay, “Plasmonics: Merging photonics and
    electronics at nanoscale dimensions,” Science, vol. 311, no. 5758, pp. 189–193, Jan. 2006.
    [22].S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1671–1677, 2006.
    [23].W. L. Barnes, “Surface plasmon–polariton length scales: A route to subwavelength optics,”J. Opt. A, Pure Appl. Opt., vol. 8, no. 4, pp. S87–S93, 2006.
    [24].P. Ginzburg, D. Arbel, and M. Orenstein,“Efficient coupling of nanoplasmonics to micro-photonic circuitry,”Lasers Electro-Optics/Quantum Electronics Laser Sci. Photonic Applications Syst. Technol., Baltimore, MD, Paper CWN5. 2005
    [25].P. Ginzburg, D. Arbel, and M. Orenstein,“Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett., vol. 31, no. 22, pp. 3288–3290, Nov. 2006.
    [26].J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B, Chem., vol. 54, no. 1, pp. 3–15,Jan. 1999.

    下載圖示 校內:2010-06-25公開
    校外:2010-06-25公開
    QR CODE