簡易檢索 / 詳目顯示

研究生: 洪名
Hong, Ming
論文名稱: 利用農業氣象站地真資料改善Landsat-8衛星遙測資料估算之地表溫度產品
Improve the surface temperature estimated from Landsat-8 Image with in situ data measured at agrometeorological stations
指導教授: 劉正千
Liu, Cheng-Chien
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 57
中文關鍵詞: 地表溫度地真資料Landsat-8發射率
外文關鍵詞: land surface temperature, situ measurement, Landsat-8, emissivity
相關次數: 點閱:51下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球暖化加劇了如乾旱、熱浪、野火、洪水等極端天氣事件,導致土壤快速流失和退化(Shukla et al. 2019)。乾旱導致農作物產量減少,長時間的乾旱造成飢荒。為了監測乾旱,使用乾旱指數來評估乾旱強度。乾旱指數主要是透過蒸發散量(Evapotranspiration, ET)和降水量來進行計算的(Ganatsas et al., 2011),因此持續觀測全球ET並提供早期乾旱警報已成為應對這一毀滅性威脅最重要的措施之一。考慮到直接測量ET的困難,通常從氣象數據(如溫度和濕度)估算參考ET,使用作物係數和壓力係數轉換為實際ET。ET的估算中,地表溫度將透過衛星影像資料去估算取得。Landsat-8/9衛星上的熱紅外儀器(Thermal Infrared Sensor , TIRS)已提供地表溫度(Land Surface Temperature, LST)產品。前人研究提出了各種方法來從熱紅外波段中估算LST 。然而,要評估和改進Landsat-8/9標準LST產品以及各種方法的LST估算,需要地面實測LST的真實數據。
    本研究利用臺灣共40個農業氣象站(Agrometeorological Stations, AS)每小時的土壤溫度測量數據。將收集的Landsat-8影像中檢索的LST與AS的LST進行比較,平均誤差為8.97°C,均方根誤差(Root Mean Square Error, RMSE)為10.34°C。這樣明顯的誤差在後續估算ET的過程中會進一步增加。因此,本研究採取了多種方法來改進從Landsat-8/9影像中提取LST的方法。利用大氣校正模型校正大氣干擾。使用紅外和近紅外波段(波段4、5)計算常態化差異植生指標和發射率。採用輻射傳輸模型計算向上和向下輻射和大氣透射率,進而估計亮溫和去除熱紅外波段的大氣干擾,從而提取LST。將研究的結果與從Landsat-8的LST進行比較,平均誤差為3.10°C,均方根誤差(RMSE)為3.84°C。針對大氣水氣含量較高的區域,本研究的修正能夠讓地表溫度估算表現得更好。

    Taiwan often experiences high levels of water vapor in the atmosphere, which can result in significant errors in satellite image products. In order to improve the accuracy of estimating land surface temperature using satellite imagery data during periods of high cloud cover, it is necessary to correct for the presence of water vapor in the atmosphere.
    This study utilized data from 48 agricultural meteorological stations in Taiwan to perform corrections and validation of land surface temperature estimation. The data were divided into two subsets: all data and cloud-free data. Regression models were separately constructed and used for the corrections.
    The research results were compared with the measured land surface temperature from agricultural meteorological stations. The original root mean square error (RMSE)for all data was 18.049℃, which was reduced to 5.759℃ after correction. For the cloud-free data, the original RMSE was 6.262℃, which was reduced to 3.114℃ after correction.
    When estimating land surface temperature, the correction for water vapor in the atmosphere is crucial, especially in regions with high water vapor. Water vapor in the atmosphere has a significant impact on the estimation of land surface temperature, and therefore, higher water vapor leads to larger errors in land surface temperature estimation.

    摘要 i Extended Abstract ii 致謝 vi 目錄 vii 圖目錄 xi 表目錄 xiii 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 1.3 論文架構 5 第 2 章 文獻回顧 8 2.1 氣候變遷造成的影響 8 2.2 地表溫度估算方法 12 2.2.1 單一通道法(Single-channel method) 12 2.2.2 分裂視窗法(Split-Window Algorithm) 13 2.2.3 輻射傳輸方程式(Radiative Transfer Equation) 14 2.2.4 比較三種地表溫度的計算方法 15 2.2.5 發射率(Emissivity) 15 2.3 地真資料的重要性 17 第 3 章 研究區域與資料 21 3.1 研究區域 21 3.1.1 臺灣自然災害 21 3.1.2 臺灣氣候特色 21 3.2 研究資料 22 3.2.1 Landsat-8影像 23 3.2.2 驗證資料 24 3.2.3 研究工具 26 3.2.4 影像遮罩工具(Function of Mask, Fmask) 26 第 4 章 研究方法 28 4.1 影像前處理 28 4.1.1 影像統一整合 28 4.1.2 輻射校正 28 4.1.3 可見光、紅外光大氣校正 30 4.1.4 熱紅外波段大氣校正 33 4.2 波段運算 34 4.2.1 常態化差異植生指標 34 4.2.2 植被比例 36 4.2.3 發射率 37 4.2.4 亮度溫度 38 4.2.5 地表溫度 40 4.3 資料分析 41 4.3.1 農業測站資料驗證比對 41 4.3.2 修正模型 43 4.4 線性迴歸 43 4.4.1 全部資料建立修正模型 45 4.4.2 無雲資料建立修正模型 46 第 5 章 結果與討論 47 5.1 農業測站資料驗證結果 47 5.2 討論 49 第 6 章 結論與建議 51 6.1 結論 51 6.2 建議 51 參考文獻 53 附錄 57

    FAO, I., UNICEF, WFP, WHO,. (2022). The State of Food Security and Nutrition in the World (SOFI). State of Food Security and Nutrition in the World, #260 p. Retrieved from https://www.fao.org/documents/card/en/c/cc0639en.
    Alley, R., & Jentoft-Nilsen, M. (1999). Algorithm theoretical basis document for: Brightness temperature.
    Andrea C. Ostroff, C. C. M., Patrick M. Lambert, Nathaniel L. Booth, Shawn L. Carter, Jason M. Stoker, Michael J. Focazio. (2017). USGS integrated drought science. doi:10.3133/cir1430
    Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of sensors, 2016, 1-8.
    Barducci, A., & Pippi, I. (1996). Temperature and emissivity retrieval from remotely sensed images using the" grey body emissivity" method. IEEE Transactions on Geoscience and Remote Sensing, 34(3), 681-695.
    Bastiaanssen, W. G., Menenti, M., Feddes, R., & Holtslag, A. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212.
    Beguería, S., Vicente‐Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International journal of climatology, 34(10), 3001-3023.
    Bosilovich, M. G. (2006). A comparison of MODIS land surface temperature with in situ observations. Geophysical Research Letters, 33(20).
    Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241-252.
    Cristóbal, J., Jiménez‐Muñoz, J., Sobrino, J., Ninyerola, M., & Pons, X. (2009). Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. Journal of Geophysical Research: Atmospheres, 114(D8).
    Dai, A. (2011a). Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. Journal of Geophysical Research: Atmospheres, 116(D12).
    Dai, A. (2011b). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65.
    Dash, P., Göttsche, F.-M., Olesen, F.-S., & Fischer, H. (2005). Separating surface emissivity and temperature using two-channel spectral indices and emissivity composites and comparison with a vegetation fraction method. Remote Sensing of Environment, 96(1), 1-17.
    Du, C., Ren, H., Qin, Q., Meng, J., & Zhao, S. (2015). A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sensing, 7(1), 647-665.
    Duan, S.-B., Li, Z.-L., Li, H., Göttsche, F.-M., Wu, H., Zhao, W., . . . Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote sensing of environment, 225, 16-29.
    Duan, S.-B., Li, Z.-L., Zhao, W., Wu, P., Huang, C., Han, X.-J., . . . Shang, G. (2021). Validation of Landsat land surface temperature product in the conterminous United States using in situ measurements from SURFRAD, ARM, and NDBC sites. International Journal of Digital Earth, 14(5), 640-660.
    Elachi, C., & Van Zyl, J. J. (2021). Introduction to the physics and techniques of remote sensing: John Wiley & Sons.
    ESRL. (2021). SURFRAD Site Information. Retrieved from https://gml.noaa.gov/grad/surfrad/sitepage.html
    Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349-359.
    Göttsche, F.-M., Olesen, F.-S., & Bork-Unkelbach, A. (2013). Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia. International Journal of Remote Sensing, 34(9-10), 3069-3083.
    Ganatsas, P., Antonis, M., & Marianthi, T. (2011). Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry. Agricultural and forest meteorology, 151(2), 241-250.
    García-Santos, V., Cuxart, J., Martínez-Villagrasa, D., Jiménez, M. A., & Simó, G. (2018). Comparison of three methods for estimating land surface temperature from landsat 8-tirs sensor data. Remote Sensing, 10(9), 1450.
    Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European journal of epidemiology, 31, 337-350.
    Gross, G., Helder, D., Begeman, C., Leigh, L., Kaewmanee, M., & Shah, R. (2022). Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the simultaneous underfly event. Remote Sensing, 14(10), 2418.
    Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4).
    He, X., Estes, L., Konar, M., Tian, D., Anghileri, D., Baylis, K., . . . Sheffield, J. (2019). Integrated approaches to understanding and reducing drought impact on food security across scales. Current Opinion in Environmental Sustainability, 40, 43-54.
    Hsu, H.-H., & Chen, C.-T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79, 87-104.
    Hulley, G. C., Ghent, D., Göttsche, F. M., Guillevic, P. C., Mildrexler, D. J., & Coll, C. (2019). Land surface temperature. In Taking the Temperature of the Earth (pp. 57-127): Elsevier.
    Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters, 11(10), 1840-1843.
    Jiménez‐Muñoz, J. C., & Sobrino, J. A. (2003). A generalized single‐channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22).
    Jimenez-Munoz, J. C., & Sobrino, J. A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research-Atmospheres, 108(D22), 9. Retrieved from <Go to ISI>://WOS:000186898500002. doi:10.1029/2003jd003480
    Jin, M., & Shepherd, J. M. (2005). Inclusion of urban landscape in a climate model: How can satellite data help? Bulletin of the American Meteorological Society, 86(5), 681-689.
    Kalma, J. D., McVicar, T. R., & McCabe, M. F. (2008). Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29, 421-469.
    Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., . . . Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of climate, 23(3), 618-633.
    Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American meteorological society, 82(9), 1949-1964.
    Li, Z.-L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., . . . Yan, G. (2013). Land surface emissivity retrieval from satellite data. International Journal of remote sensing, 34(9-10), 3084-3127.
    Li, Z., Petitcolin, F., & Zhang, R. (2000). A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data. Science in China Series E: Technological Sciences, 43, 23-33.
    Markham, B., Barsi, J., Montanaro, M., McCorkel, J., Gerace, A., Pedelty, J., . . . Haque, M. O. (2018). Landsat-8 on-orbit and Landsat-9 pre-launch sensor radiometric characterization. Paper presented at the Earth Observing Missions and Sensors: Development, Implementation, and Characterization V.
    Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., . . . Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
    Niclos, R., Puchades, J., Coll, C., Barbera, M. J., Perez-Planells, L., Valiente, J. A., & Sanchez, J. M. (2021). Evaluation of Landsat-8 TIRS data recalibrations and land surface temperature split-window algorithms over a homogeneous crop area with different phenological land covers. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 237-253.
    Peres, L. F., & DaCamara, C. C. (2004). Land surface temperature and emissivity estimation based on the two-temperature method: sensitivity analysis using simulated MSG/SEVIRI data. Remote Sensing of Environment, 91(3-4), 377-389.
    Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International journal of remote sensing, 22(18), 3719-3746.
    Schepaschenko, D., McCallum, I., Shvidenko, A., Fritz, S., Kraxner, F., & Obersteiner, M. (2011). A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information. Journal of Land Use Science, 6(4), 245-259.
    Schmidt, A. F., & Finan, C. (2018). Linear regression and the normality assumption. Journal of clinical epidemiology, 98, 146-151.
    Sekertekin, A. (2019). Validation of physical radiative transfer equation-based land surface temperature using Landsat 8 satellite imagery and SURFRAD in-situ measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 196, 105161.
    Shiau, J.-T., & Hsiao, Y.-Y. (2012). Water-deficit-based drought risk assessments in Taiwan. Natural hazards, 64, 237-257.
    Snyder, W. C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of remote sensing, 19(14), 2753-2774.
    Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434-440.
    Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., . . . Martínez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316-327.
    Sobrino, J. A., Souza da Rocha, N., Skoković, D., Suélen Käfer, P., López-Urrea, R., Jiménez-Muñoz, J. C., & Alves Rolim, S. B. (2021). Evapotranspiration Estimation with the S-SEBI Method from Landsat 8 Data against Lysimeter Measurements at the Barrax Site, Spain. Remote Sensing, 13(18), 3686.
    Sruthi, S., & Aslam, M. M. (2015). Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia, 4, 1258-1264.
    Sui, C. (2021). 臺灣缺水為何吸引了全世界關注,這次到底有多嚴重?. BBC News. Retrieved from https://www.bbc.com/zhongwen/trad/chinese-news-56814382
    Tardy, B., Rivalland, V., Huc, M., Hagolle, O., Marcq, S., & Boulet, G. (2016). A software tool for atmospheric correction and surface temperature estimation of Landsat infrared thermal data. Remote Sensing, 8(9), 696.
    Trigo, I. F., Monteiro, I. T., Olesen, F., & Kabsch, E. (2008). An assessment of remotely sensed land surface temperature. Journal of Geophysical Research: Atmospheres, 113(D17).
    Tsai, Y.-C. (2017). 1961-2015 年間受全球暖化影響下臺灣不同季節降雨的變化趨勢. National Central University,
    Ulivieri, C., Castronuovo, M., Francioni, R., & Cardillo, A. (1994). A split window algorithm for estimating land surface temperature from satellites. Advances in Space Research, 14(3), 59-65.
    UNU-EHS. (2022). Taiwan drought. Retrieved from https://interconnectedrisks.org/disasters/taiwan-drought
    USGS. (2021). Landsat Collection 1 vs Collection 2 Summary. Retrieved from https://www.usgs.gov/media/files/landsat-collection-1-vs-collection-2-summary
    Van de Griend, A., & Owe, M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of remote sensing, 14(6), 1119-1131.
    VOGT, J., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., . . . MARINHO, F. B. P. (2018). Drought Risk Assessment and Management.
    Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., & Zhao, S. (2015). An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4), 4268-4289.
    Wang, M., Zhang, Z., Hu, T., & Liu, X. (2019). A practical single‐channel algorithm for land surface temperature retrieval: application to Landsat series data. Journal of Geophysical Research: Atmospheres, 124(1), 299-316.
    Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467-483.
    White-Newsome, J. L., Brines, S. J., Brown, D. G., Dvonch, J. T., Gronlund, C. J., Zhang, K., . . . O’Neill, M. S. (2013). Validating satellite-derived land surface temperature with in situ measurements: A public health perspective. Environmental health perspectives, 121(8), 925-931.
    Yadollahie, M. (2019). The flood in Iran: a consequence of the global warming? The international journal of occupational and environmental medicine, 10(2), 54.
    Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A survival guide to Landsat preprocessing. Ecology, 98(4), 920-932.
    Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10), 9829-9852.
    Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K., & Li, Z.-L. (2014). Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature. Remote Sensing, 6(4), 3170-3187.
    Zhou, J., Li, J., Zhang, L., Hu, D., & Zhan, W. (2012). Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere. International journal of remote sensing, 33(8), 2582-2602.
    Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83-94.
    劉玫婷, 李., 徐永衡, 陳永明. (2021). 2021 年乾旱事件農作物損失調查紀實. 災害防救電子報. Retrieved from https://www.ncdr.nat.gov.tw/UploadFile/Newsletter/efc8cdba0d5b41398ea57629040337d6.pdf.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE