| 研究生: |
楊正瑋 Yanf, Zheng-wei |
|---|---|
| 論文名稱: |
小波轉換應用於板架結構的損傷偵測 Damage Detection in Stiffened Plates by Wavelet Transform |
| 指導教授: |
楊澤民
Yang, Joe-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 板架結構 、損傷偵測 、二維離散小波分析 、小波包 |
| 外文關鍵詞: | wavelet packet, stiffened structure, damage detection, two-dimensional discrete wavelet analysis |
| 相關次數: | 點閱:116 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來將小波分析方法應用於結構的損傷偵測是一個相當熱門的研究領域,但是其研究範圍多半侷限在樑、平板、軸承等簡單的結構上。然而應用在實際的工程問題上時,這些簡單的結構極少單獨存在。為了使破損偵測的研究能使用於實際的船舶結構上,本研究針對板架結構,探討使用小波分析方法偵測其損傷位置的可能性。
本研究首先以有限元素模擬含有缺陷的板架結構,並以二維離散小波分析板架結構的模態振型以找出缺陷的位置,然後對四個不同的板架結構進行實驗。實驗時先以激振器給予板架結構ㄧ個衝擊,然後以加速規量測板架結構的振動訊號,接下來以小波包轉換從振動訊號中找出板架結構的模態振型,最後以二維離散小波分析找出裂縫的位置。有限元素模擬及實驗結果顯示本研究所提出之損傷偵測方法有良好的損傷識別能力,並且較以往的方法能大幅地減少所需的量測點。
Wavelet analysis has been the useful tool to detect damage in structures during recent decades. However, almost all researches have focused on the damage identification in basic structures, such as beams, plates, and bearings. In practical application, the basic structures do not exist alone. Instead, they are usually accompanied with one another. Stiffened structures are commonly used in ship structures and are investigated in this study. The present investigation focuses on the estimation of damage location in damaged stiffened structures by wavelet analysis.
In numerical analysis, the first mode shape of the damaged stiffened panels is simulated by finite element method, and the damage locations are detected by two-dimensional discrete wavelet analysis. In experimental analysis, four different damaged stiffened structures are considered. The experiment consists of four steps. Firstly, a shaker was used to make an impact on the damaged structure. Secondly, accelerometers were used to measure the vibration responses of the structure. In the third step, the first mode shape of the structure is obtained by using the wavelet packet. Finally, two-dimensional discrete wavelet analysis was applied to determine the location of cracks.
The results of numerical analysis and experimental investigation reveal that the proposed method is applicable to detect single crack or multi-cracks of a stiffened structure. The experimental results also show that fewer measurement points are required by utilizing the proposed method in comparison to those presented in previous studies.
[1] Cawley, P., and Adams, R.D., ”The Location of Defects in Structures from Measurement of Natural Frequencies.,” Journal of Strain Analysis, 14, 1979.
[2] Daubechies, I., “Ten Lectures on Wavelets”, SIAM, Philadelphia, 1992.
[3] Deng, X., Wang, Q., “Crack Detection Using Spatial Measurements and Wavelet,” International Journal of Fracture, Vol. 91, 1998.
[4] Douka, E., Loutridis, S., and Trochidis, A., “Crack Identification in Doube-cracked Beams Using Wavelet Analysis,” Journal of Sound and Vibration, 277, pp.1025-1039, 2004.
[5] Fuchs, H.O., ”Metal Fatigue in Engineering,” John-Wiley & Sons Inc, 1980.
[6] Liew, K. M., Wang, Q., “Application of Wavelet Theory for Crack Identication in Structures”, Journal of Engineering Mechanics, Vol.124(2), pp.152-157, 1998.
[7] Loutridis, S., Douka, E., and Trochidis, A., “Crack Identification in Beams Using Wavelet Analysis,” International Journal of Solids and Structures , Vol.40, pp.3557-3569, 2003.
[8] Mallat, S.G., “A Theory for Multiresolution Signal Decomposition, The Wave Representation”, Comm. Pure Appl. Math, 41, pp.674-693, 1988.
[9] Mallat, S., “A Wavelet Tour of Signal Processing”, Academic Press, USA, 1998.
[10] Messina, A., Jones, I.A., “Damage Detection and Localization Using Natural Frequency Change,” 14th International Modal Analysis Conference, Orlando, pp.67-76, 1996.
[11] Messina, A., Williams, E.J., Contursi, T., “Structural Damage Detection by Sensitivity and Statistical-Based Method,” Journal of Sound andVibration, 216, pp.791-808, 1998.
[12] Meyer, Y., Ondettes et Functions Splines, Lectures given at the University of Torino, Italy, 1986.
[13] Meyer, Y., Ondettes, Functions Splines et Analyses Graduees, Seminaire EDP, Ecole Polytechnique, Paris, France, 1986.
[14] Morlet, J., Arens, G., Fourgeau, I., and Giard, D., “Wave Propagation and Sampling Theory”, Geophysics, 47, pp.203-236, 1982.
[15] Morlet, J., “Sampling Theory and Wave Propagation”, NATO ASI Series, Issues in Acoustic Signal/Image Processing and Recognition , Vol. I, pp.233-261, 1983.
[16] Narkis, Y., ”Identification of Crack Location in Vibrating Simply Supported Beams,” Journal of Sound and Vibration, 172, pp.549-558, 1994.
[17] Pandey, A.K., Biswas, M., Samman, M.M., “Damage Detection from Changes in Curvature Mode Shapes,” Journal of Sound and Vibration, 145, pp. 321-332, 1991.
[18] Peng, Z.K., Chu, F.L., “Application of the Wavelet Transform in Machine Conditionmonitoring and Fault Diagnostics: a Review with Bibliography,” Mechanical Systems and Signal Processing, 18, pp.199–221, 2004.
[19] Ratcliffe, C.P., “Damage Detection Using a Modified Laplacian Operator on Mode Shape Data,” Journal of Sound and Vibration, 204, pp.505-517, 1997.
[20] Sampaio, R.P.C., Maia, N.M.M., Silva, J.M.M., “Damage Detection Using the Frequency-Response-Function Curvature Method,” Journal of Sound and Vibration, 226, pp. 1029-1042, 1999.
[21] Stubbs, N., Kim, J.T., “Damage Localization in Structures Without Baseline Modal Parameters,” American Institute of Aeronautics and Astronautics Journal, 34, pp. 1644-1649, 1996.
[22] Surace, C., and Ruotolo, R., “Crack Detection of a Beam Using the Wavelet Transform”, Proceedings of the 12th International Modal Analysis Conference, Honolulu, pp.1141-1147, 1994.
[23] Wang, Q., Deng, X., “Damage Detection with Spatial Wavelets,” International Journal of Solids and Structures, Vol.36, pp.3443-3468, 1999.
[24] Zhong, Shuncong, Olutunde Oyadiji, S., “Crack Detection in Simply Supported Beams Without Baseline Modal Parameters by Stationary Wavelet Transform,” Mechanical Systems and Signal Processing, 21, pp.1853-1884, 2007
[25] 王木百村, “實驗模態分析,” 課程講義, 台灣, 1996.
[26] 王柏村, “振動學,” 全華科技, 台灣, 1996.
[27] 長思科技產品研發中心,“MATLAB6.5輔助小波分析與應 用,”電子工業出版社,北京,2003.
[28] 柯志宏,”二維離散小波轉換應用於帶有加強材之平板破損偵測,”國立成功大學造船暨船舶機械工程研究所,碩士論文,中華民國九十六年六月.
[29] 胡昌華等,“基於MATLAB的系統分析與設計:小波分析,” 西安電子科技大學出版社,中國大陸,1999.
[30] 洪維恩,”Matlab 7 程式設計,” 旗標出版社,台灣,2006.
[31] 許有村, “小波理論在機械結構破壞點偵測上的應用,” 國立台灣大學機械工程研究所, 碩士論文, 中華民國八十七年六月.
[32] 陳精一,蔡國忠, “電腦輔助工程分析ANSYS使用指南,” 全華科技股份有限公司, 台灣, 2000.
[33] 惠汝生, “自動量測系統-LabVIEW,” 全華出版社, 台灣, 2002
[34] 張智星, “MATLAB程式設計與應用,” 清蔚科技, 台灣, 2000.
[35] 張智傑,“小波訊號處理於結構破損偵測之應用,”國立成功大學機械工程學系,博士論文,中華民國九十三年六月.
[36] 單維彰, “凌波初步,” 全華科技, 台灣, 2000.
[37] 楊邦樑,“小波轉換應用於平板與樑的雙破損偵測之研究,” 國立成功大學造船暨船舶機械工程研究所,碩士論文,中華民國九十六年六月.
[38] 廖翊宏,”小波轉換應用於樑的破損偵測之研究,”國立成功大學造船暨船舶機械工程研究所,碩士論文,中華民國九十二年六月.
[39] 潘威成, “以模態實驗方法研究懸臂樑的振動行為 ,” 國立成功大學土木工程研究所, 中華民國八十九年七月.
[40] 蔡展榮, “小波基礎理論與應用課程講義,” 國立成功大學空間及測量工程學系研究所, 2002.
[41] 劉晉奇,褚晴暉,”有限元素分析與ANSYS的工程應用,” 滄海書局, 台灣, 2006.
[42] 蕭子健, “LabVIEW分析篇,” 高立出版社, 台灣, 2000.
[43] 蕭子健, “LabVIEW進階篇,” 高立出版社, 台灣, 2000.