簡易檢索 / 詳目顯示

研究生: 陳佳育
Chen, Chia-Yu
論文名稱: 材料等效策略與後挫曲分析的建立與其在扇出型晶圓重組製程上翹曲預測的應用
Development of Material Equivalence Strategies and Post-Buckling Analysis for Warpage Prediction in Fan-out Reconstitution Process
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 133
中文關鍵詞: 晶圓翹曲有限元素分析材料等效後挫曲分析
外文關鍵詞: Wafer warpage, Finite element analysis, Material equivalence, Post-buckling analysis
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電子封裝技術演進下晶圓重組製程因為晶片設計功能的提升而成為主要趨勢,然而在製程中會產生晶圓翹曲現象。為了解決此問題會使用數值模擬的方法進行分析,但是封裝結構為高度非均質,需要利用網格數極高的三維有限元素模擬求解,導致計算量過大。因此,如何將原始複雜模型進行簡化,並且結合解析式預測形成高效率有效的計算方式,其中利用材料等效方法進行簡化為重要的發展。此外,目前預測晶圓非對稱翹曲的方式是以有限元素模擬的非線性分析為主,若欲使用挫曲與後挫曲分析角度進行探討,以此尋求不同的解決方式作為有其潛力所在的替代方案來研究晶圓翹曲問題,則可以對於實際製程上的情況進行更全面的分析。有鑑於此,本文發展一基於能量角度的材料結構等效方法,將原始晶圓複雜結構轉換成簡化等效雙層結構模型,搭配修正型解析解預測非對稱翹曲,並且與其他等效方法做比對。由結果顯示,使用Che與Park的等效方法搭配修正型解析式最有效,可以成功預測重組晶圓的分歧溫度和翹曲狀況,達到快速有效的分析和預測。並且以挫曲與後挫曲分析探討晶圓挫曲發生時機和翹曲狀況,並且和非線性分析進行比對,模擬的結果顯示兩者分析的分歧溫度和最終翹曲值誤差分別為14%和6%,誤差在可接受範圍內所以可以驗證其可行性,因此後挫曲分析可以作為發展晶圓重組製程非對稱翹曲的分析工具。後續建立含挫曲與後挫曲分析的製程模擬器,在大變形區域預測其翹曲幅度,並且與非線性分析相比對,誤差為3%以內因此可以驗證模擬結果和規劃流程的可行性,則能對於產線的實際情況做更全面的分析。未來在材料等效部分將針對剛性進行等效,另外建立符合剛性等效的模型,達成在電子封裝領域中提升晶圓翹曲的預測性,將其擴展至其他工程領域上。在挫曲與後挫曲分析部分探討更多不同數值模型對其參數的影響研究敏感度的分析,更真實描述實際製程的內容與變形行為。

    Asymmetric warping is an annoying phenomenon causing defects and reducing process yield of wafers and it must be prevented. Traditionally, full-scale 3D finite element simulations and nonlinear analysis are usually used for addressing this concern but it is extremely expensive. Therefore, alternative effective approaches should be sought. The purpose of this thesis is to perform structure and material equivalences for converting the original highly complex 3D structure into a bi-layered structure with equivalent uniform materials for conducting semi-analytical prediction and efficient finite element simulations for addressing the above needs. In addition, the buckling and post-buckling analysis methods are also hired to predict the asymmetric warpage of packaged wafers as an alternative approach for warpage analysis in the future. To achieve the goal, material equivalence methods using a self-developed energy-based approach is developed along with traditional arithmetic average as well as the methods proposed by Che [6] and Park [7] et al for predicting asymmetric warpage with semi-analytical solution. In comparison while the proposed energy-based approach is feasible, its performance still could not match with that provided by Che [6] and Park [7] methods. Nevertheless, it is expected that such the proposed approach could be further improved. Furthermore, the warpage predicting scheme based on buckling and post-buckling analyses have shown consisted results with current nonlinear bifurcation approach [9,10] and benchmark finite element solutions. Therefore, the feasibility has been confirmed although the computational cost should be further reduced in the future. Finally, a process emulator with buckling and post-buckling analysis is established to highlight the applicability of such an approach in whole process wafer warpage prediction. It is believed that with the investigation results of this work should have strong impact for future fan-out reconstituted packaging process optimization.

    摘要 I Abstract II Extended Abstract III 致謝 XXIX 目錄 XXXI 圖目錄 XXXIV 表目錄 XXXVII 符號及縮寫表 XXXVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 6 1.2.1 電子封裝的翹曲模擬 6 1.2.2 材料結構等效 7 1.2.3 挫曲與後挫曲分析 9 1.2.4 評論 10 1.3 研究動機與目的 11 1.4 研究方法 13 1.5 本文架構 15 第二章 研究背景 17 2.1 本章介紹 17 2.2 晶圓重組製程 18 2.3 晶圓翹曲 24 2.4 材料等效 28 2.5 結構挫曲 33 2.6 本章總結 36 第三章 材料等效與結構挫曲相關力學模擬發展 37 3.1 本章介紹 37 3.2材料結構等效模型的發展與推導 38 3.2.1 算術平均法 38 3.2.2 Che方法 39 3.2.3 Park方法 41 3.3挫曲與後挫曲分析的發展 44 3.3.1 線性挫曲分析 44 3.3.2 非線性後挫曲分析 46 3.4 本章總結 51 第四章 基於能量法之材料結構等效模型的發展 52 4.1 本章介紹 52 4.2能量法的發展概念 53 4.2.1 理想狀況假設下之推演 53 4.2.2 有限元素模型分析之驗證 54 4.3能量法的假設和限制性 57 4.4有限元素模型的應用與驗證 58 4.4.1 在有限元素分析中將能量法擴展至複雜結構 58 4.4.2 楊氏係數之參數分析 60 4.4.3 熱膨脹係數之參數分析 61 4.4.4 蒲松比差值之參數分析 62 4.5 本章總結 64 第五章 材料等效模型於電子封裝上的力學分析應用和驗證 65 5.1 本章介紹 65 5.2實際完整晶圓模型分析 66 5.3簡化之等效雙層模型的應用 69 5.3.1算術平均法 69 5.3.2 能量法 70 5.3.3 Che方法 70 5.3.4 Park方法 71 5.3.5 不同等效方法的材料性質 71 5.4不同等效方法的分析結果與驗證 73 5.4.1不同等效方法分歧溫度的比較 73 5.4.2不同等效方法翹曲值的比較 74 5.5剛性翹曲等效[13] 76 5.6本章總結 79 第六章 挫曲與後挫曲分析於電子封裝上的應用 80 6.1 本章介紹 80 6.2挫曲失效下之整體模擬的規劃和架構 81 6.3 1/4完整晶圓模型分析 83 6.3.1 模擬分析的結果驗證和參數化測試 83 6.3.2討論 86 6.4簡化之等效雙層模型分析 88 6.4.1不同等效方法的分析結果與驗證 88 6.4.2參數化的測試和分析 91 6.4.3討論 93 6.5結果討論 95 6.6本章總結 96 第七章 含挫曲與後挫曲分析的製程模擬器發展 97 7.1 本章介紹 97 7.2有限元素分析於實際製程上的應用 98 7.3以挫曲與後挫曲分析設計之製程模擬器模組 100 7.4以1/4完整模型模擬實際製程 103 7.4.1 模擬chip-last製程 103 7.4.2 模擬chip-first製程 105 7.5以等效雙層模型模擬實際製程 108 7.5.1 模擬chip-last製程 108 7.5.2 模擬chip-first製程 109 7.6製程模擬結果討論 111 7.7本章總結 114 第八章 研究結果與討論 115 8.1 全文歸納 115 8.2研究結果討論 117 8.2.1 材料等效方法之評估 117 8.2.2 挫曲與後挫曲分析於電子封裝上的應用和製程模擬器的發展 118 8.3展望與未來工作 119 第九章 結論與未來展望 121 9.1 本文結論 121 9.2本文貢獻 123 9.3未來工作 125 參考文獻 126 附錄 130

    [1] J. H. Lau, "Recent Advances and Trends in Fan-Out Wafer/Panel-Level Packaging," Journal of Electronic Packaging, vol. 141, no. 4, 2019.
    [2] X. Fan, "Wafer level packaging (WLP): Fan-in, fan-out and three-dimensional integration," in Proc. 11th Int. Conf. Thermal Mech. Multi Phys. Simulat. Exp. Microelectron. Microsyst, 2010, pp. 1-7.
    [3] "先進封裝," https://www.gushiciku.cn/dl/1p4No/zh-hk.
    [4] "Advanced Packaging’s Progress," https://semiengineering.com/advanced-packagings-progress/.
    [5] H.-C. Cheng and Y.-C. Liu, "Warpage Characterization of Molded Wafer for Fan-Out Wafer-Level Packaging," Journal of Electronic Packaging, vol. 142, no. 1, 2019.
    [6] M. L. Dunn, Y. Zhang, and V. M. Bright, "Deformation and structural stability of layered plate microstructures subjected to thermal loading," Journal of Microelectromechanical Systems, vol. 11, no. 4, pp. 372-384, 2002.
    [7] 楊承穎, "散出型晶圓級構裝製程之翹曲與晶粒偏移分析與改善," 國立成功大學機械工程學系碩士論文, 2018.
    [8] F. Che, H. Y. Li, X. Zhang, S. Gao, and K. H. Teo, "Development of Wafer-Level Warpage and Stress Modeling Methodology and Its Application in Process Optimization for TSV Wafers," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 6, pp. 944-955, 2012.
    [9] S. Park, H. C. Lee, B. Sammakia, and K. Raghunathan, "Predictive Model for Optimized Design Parameters in Flip-Chip Packages and Assemblies," IEEE Transactions on Components and Packaging Technologies, vol. 30, no. 2, pp. 294-301, 2007.
    [10] S. Liu, C. Tsai, and K. Chiang, "Warpage and Simulation Analysis of Panel Level FO-WLCSP Using Equivalent CTE," in 2019 International Conference on Electronics Packaging (ICEP), 2019, pp. 242-245.
    [11] D.-K. Shin and J. J. Lee, "Analysis of Asymmetric Warpage of Thin Wafers on Flat Plate Considering Bifurcation and Gravitational Force," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 2, pp. 248-258, 2014.
    [12] 涂鏡松, "後挫屈之數值分析方法研究," 國立海洋大學河海工程學系碩士論文, 2003.
    [13] 李育瑾, "扇出型晶圓級封裝製程之非線性翹曲分析與製程模擬器建立," 國立成功大學機械工程學系碩士論文, 2022.
    [14] K. S. Chen, Y. C. Lee, C. Y. Chen, T. Y. Chen, D. L. Chen, and D. Tarng, "Development of Semi-Analytical Formulation for Asymmetric Warpage Prediction in Fan-Out Reconstitution Process," 2021 International Conference on Electronics Packaging (ICEP), pp. 165-166, 2021.
    [15] Y. C. Lee, C. Y. Chen, Y. S. Chen, K. S. Chen, T. Y. Chen, D. L. Chen, and D. Tarng, "Development and Validation of a Semi-Analytical Model for Predicting Asymmetric Warpage of Fan-Out Reconstituting Packaging," in 2021 16th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2021, pp. 123-126.
    [16] "半導體FOWLP封裝技術," https://kknews.cc/digital/ekq4jny.html.
    [17] T. Meyer, G. Ofner, S. Bradl, M. Brunnbauer, and R. Hagen, "Embedded Wafer Level Ball Grid Array (eWLB)," in 2008 10th Electronics Packaging Technology Conference, 2008, pp. 994-998.
    [18] S.-S. Deng, S.-J. Hwang, and H.-H. Lee, "Warpage Prediction and Experiments of Fan-Out Waferlevel Package During Encapsulation Process," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 3, pp. 452-458, 2013.
    [19] M.-H. Chan, Y.-P. Wang, I. Chang, J. Chiang, G. Pan, N. Kao, and D. Wang, "Development and Challenges of Warpage for Fan-Out Wafer-Level Package Technology," International Symposium on Microelectronics, vol. 2016, no. 1, pp. 000524-000528, 2016.
    [20] G. Gadhiya, B. Brämer, S. Rzepka, and T. Otto, "Assessment of FOWLP process dependent wafer warpage using parametric FE study," in 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), 2019, pp. 1-8.
    [21] M. van Dijk, J. Jaeschke, O. Wittler, A. Stegmaier, and M. Schneider-Ramelow, "Process Simulation of Fan-Out Wafer Level Packaging: Influence of Material and Geometry on Warpage," in 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), 2020, pp. 1-6.
    [22] M. Su, L. Cao, T. Lin, F. Chen, J. Li, C. Chen, and G. Tian, "Warpage simulation and experimental verification for 320 mm × 320 mm panel level fan-out packaging based on die-first process," Microelectronics Reliability, vol. 83, pp. 29-38, 2018.
    [23] T. Uhrmann, M. Pichler, J. Bravin, D. Burgstaller, and B. Považay, "Laser Debonding Enabling Ultra-Thin Fan-Out WLP Devices," 2018 7th Electronic System-Integration Technology Conference (ESTC), 2018, pp. 1-5.
    [24] S. Timoshenko, "Analysis of Bi-Metal Thermostats," J. Opt. Soc. Am., vol. 11, no. 3, pp. 233-255, 1925.
    [25] F. X. Che, D. Ho, M. Z. Ding, and X. Zhang, "Modeling and design solutions to overcome warpage challenge for fan-out wafer level packaging (FO-WLP) technology," in 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), 2015, pp. 1-8.
    [26] F. X. Che, D. Ho, M. Z. Ding, and D. R. MinWoo, "Study on Process Induced Wafer Level Warpage of Fan-Out Wafer Level Packaging," presented at the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 2016.
    [27] J. H. Lau et al., "Warpage and Thermal Characterization of Fan-Out Wafer-Level Packaging," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 10, pp. 1729-1738, 2017.
    [28] M. van Dijk, S. Kuttler, F. Rost, J. Jeaschke, H. Walter, O. Wittler, T. Braun, and M. Schneider-Ramelow, "Simulation challenges of warpage for wafer- and panel level packaging," in 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2020, pp. 1-6.
    [29] 鐘詠迪, "316L不鏽鋼之選擇性雷射熔融積層製程應力與變形分析," 國立成功大學機械工程學系碩士論文, 2018.
    [30] Y.-S. Zhan and C.-h. Lin, "Micromechanics-based constitutive modeling of magnetostrictive 1–3 and 0–3 composites," Composite Structures, vol. 260, p. 113264, 2021.
    [31] C. Zhu, P. Guo, and Z. Dai, "Investigation on wafer warpage evolution and wafer asymmetric deformation in fan-out wafer level packaging processes," in 2017 18th International Conference on Electronic Packaging Technology (ICEPT), 2017, pp. 664-668.
    [32] W. Fang and J. A. Wickert, "Post buckling of micromachined beams," Journal of Micromechanics and Microengineering, vol. 4, no. 3, pp. 116-122, 1994.
    [33] C. Özgen and V. Z. Doğan, "An Imperfection Sensitivity Analysis on Buckling of Laminated Composite Cylindrical Shells," in 2021 IEEE 4th International Conference on Nanoscience and Technology (ICNST), 2021, pp. 73-76.
    [34] C.-H. Chuang, Y.-K. Chang, K.-S. Chen, and C.-C. Chen, "Buckling and Postbuckling Failure Analyses on a Rectangular Membrane for Touch Panel Applications," IEEE Transactions on Device and Materials Reliability, vol. PP, pp. 1-1, 2017.
    [35] C. Y. Chen, Y. C. Lee, Y. S. Chen, K. S. Chen, T. Y. Chen, D. L. Chen, and D. Tarng, "Establishment and Accuracy Assessment of Structural Equivalence of Fan-out Reconstitute Wafer for Asymmetric Warpage Prediction," in Proceedings of Technical Papers - International Microsystems, Packaging, Assembly, and Circuits Technology Conference, IMPACT, 2021, vol. 2021-December, pp. 127-130.
    [36] R. Schapery, "Thermal Expansion Coefficients of Composite Materials Based on Energy Principles," Journal of Composite Materials - J COMPOS MATER, vol. 2, pp. 380-404, 1968.
    [37] 賴彥錕, "以實驗與模擬探討含脫層之複合材料三明治結構破壞行為," 國立交通大學機械工程學系碩士論文, 2012.
    [38] "Modified Riks algorithm , " https://abaqus-docs.mit.edu/ 2017/English/SIMACAETHERefMap/simathe-c-modifiedriks.htm.
    [39] E. Riks, "An incremental approach to the solution of snapping and buckling problems," International Journal of Solids and Structures, vol. 15, no. 7, pp. 529-551, 1979.

    無法下載圖示 校內:2027-08-24公開
    校外:2027-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE