簡易檢索 / 詳目顯示

研究生: 黃元炤
Huang, Yuan-Chao
論文名稱: 十二重旋轉對稱性準聲子晶體之偽自旋拓樸邊緣態研究
Topological pseudo-spin edge states of quasiperiodic phononic crystals with 12-fold symmetry
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: 聲子晶體準晶體邊緣模態量子自旋霍爾效應
外文關鍵詞: Phononic crystals, Quasicrystals, Edge states, Quantum spin Hall effect
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體以量子霍爾效應、量子能谷霍爾效應以及量子自旋霍爾效應等理論為基礎,其強大的能量傳播能力受到矚目,在電磁波、聲波、彈性波等領域都有許多學者進行研究。本文研究具十二重旋轉對稱性之準晶體,由於準晶體缺少平移對稱性,所以必須先探討分析的單位晶格尺寸,以滿足布洛赫定理,本文成功模擬準聲子晶體之色散曲線及穿透率,並利用準聲子晶體之特性設計共振耦合之無缺陷波導。另外本文以具十二重旋轉對稱性之準晶體的幾何作為基礎,基於量子自旋霍爾效應,提出三角晶格排列之聲學拓樸絕緣體,其優點為不需外加強磁場以及在極低溫之環境下即可實現,利用改變圓柱半徑討論其能帶結構,觀察能帶反轉的現象,進而產生受拓樸保護之邊緣模態,最後利用全波模擬兩種不同型式之介面,驗證其波傳能抑制後向散射及不受路徑轉彎的影響。由於電子的自旋方向有兩種,在本文中成功激發了單一方向的波傳,進而可以設計出高穿透率且可抑制的後向散射的聲學元件。

    The researches of topological insulators (TIs) have recently emerged due to the interest in robustly transport based on quantum Hall effect, quantum valley Hall effect, and quantum spin Hall effect (QSHE). These topics have been involved in distinct fields, such as electromagnetic wave, sound waves, and elastic wave, etc. In this thesis, the quasiperiodic phononic crystals with 12-fold symmetry have been investigated. Owing to the lack of translational symmetry, we discuss the size of unit cell and regard it as the periodic structure. We prove the accuracy of the dispersion relations by full wave simulation. We also design the defect-free coupled-resonator waveguides. Based on QSHE, we present acoustic topological insulators (ATIs) of the quasiperiodic phononic crystals with 12-fold symmetry. It neither need to apply magnetic field nor need to realize in extremely low temperature condition. By modulating the diameter of the cylinder, band inversion is realized. This phenomenon gives rise to a pair of counter-propagating topologically protected edge states. We demonstrate the wave propagation is immune to backscattering, disorder, and sharp bends in the full wave simulation. We also successfully excite pseudospin-dependent one-way transport.

    中英文摘要 I 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XVII 符號 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 類比於光子晶體的聲子晶體 2 1-2-2 聲子晶體之能隙現象 3 1-2-3 準晶體 4 1-2-4 拓樸學與量子霍爾效應 5 1-2-5 量子能谷霍爾效應與量子自旋霍爾效應 6 1-3 本文架構 7 第二章 理論與數值方法 11 2-1 前言 11 2-2 固態物理學之基本定義 12 2-2-1 實晶格與倒晶格空間(Reciprocal space) 12 2-2-2 布里淵區(Brillouin zones)與布洛赫定理(Bloch theorem) 15 2-3 有限元素法 16 2-3-1 有限元素法之基本概念 16 2-3-2 聲學模組之有限元素法推導 17 2-4 量子系統中的能帶理論 20 2-4-1 能帶理論與拓樸相變 20 2-4-2 貝瑞相位(Berry phase)與陳數(Chern number) 20 2-5 量子霍爾效應簡介 22 2-5-1 整數量子霍爾效應 22 2-5-2 量子自旋霍爾效應 23 2-5-3 量子能谷霍爾效應 23 第三章 探討準聲子晶體之參數及波傳分析 31 3-1 前言 31 3-2 準聲子晶體單位晶格尺寸對能帶結構之影響 31 3-2-1 準聲子晶體結構模型建立 31 3-2-2 準聲子晶體之結構能帶分析 32 3-3 準聲子晶體晶格排列方式對能帶結構之影響 33 3-4 全波模擬之穿透率驗證及無缺陷之波導 34 第四章 具拓樸保護邊緣模態之討論與波傳分析 45 4-1 前言 45 4-2 具十二重旋轉對稱性之三角晶格結構能帶分析 45 4-3 邊體關係圖(Edge-Bulk Correspondence) 47 4-3-1 超晶胞法與界面型態 47 4-3-2 Zigzag界面邊體關係圖分析 48 4-3-3 Armchair界面邊體關係圖分析 48 4-4 Zigzag界面全波模擬(Full wave simulation)分析 49 4-4-1 Zigzag界面第一組幾何參數之全波模擬 49 4-4-2 Zigzag界面第二組幾何參數之全波模擬 50 4-5 Armchair界面全波模擬(Full wave simulation)分析 51 4-5-1 Armchair界面第一組幾何參數之全波模擬 51 4-5-2 Armchair界面第二組幾何參數之全波模擬 52 4-6 偽自旋效應與單向傳播(pseudospin-dependent one-way transport) 53 第五章 綜合結論與未來展望 85 5-1 綜合結論 85 5-2 未來展望 86 參考文獻 87

    [1] Yablonovitch, Eli. "Inhibited spontaneous emission in solid-state physics and electronics." Physical review letters 58.20 (1987): 2059.
    [2] 維基百科編者. "Penrose tiling." 維基百科,自由的百科全書. (accessed 2020-06-19UTC20:00:00+00:00 (UTC).
    [3] Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W. "Metallic phase with long-range orientational order and no translational symmetry." Physical review letters 53.20 (1984): 1951.
    [4] Asbóth, János K., László Oroszlány, and András Pályi. "A short course on topological insulators." Lecture notes in physics 919 (2016): 87.
    [5] 維基百科編者. "拓撲絕緣體." 維基百科,自由的百科全書. (accessed 2016-10-15UTC16:38:17+00:00 (UTC).
    [6] John, Sajeev. "Strong localization of photons in certain disordered dielectric superlattices." Physical review letters 58.23 (1987): 2486.
    [7] Yablonovitch, Eli, and T. J. Gmitter. "Photonic band structure: The face-centered-cubic case." Physical Review Letters 63.18 (1989): 1950.
    [8] Zheng, Hanbin, and Serge Ravaine. "Bottom-up assembly and applications of photonic materials." Crystals 6.5 (2016): 54.
    [9] Sigalas, Michael M., and Eleftherios N. Economou. "Elastic and acoustic wave band structure." Journal of sound and vibration 158.2 (1992): 377-382.
    [10] Kushwaha, Manvir S., Halevi, P., Dobrzynski, L., and Djafari-Rouhani, B. "Acoustic band structure of periodic elastic composites." Physical review letters 71.13 (1993): 2022.
    [11] Kushwaha, Manvir S., Halevi, P., Martinez, G., Dobrzynski, L., and Djafari-Rouhani, B. "Theory of acoustic band structure of periodic elastic composites." Physical Review B 49.4 (1994): 2313.
    [12] Kushwaha, M. S., and P. Halevi. "Band‐gap engineering in periodic elastic composites." Applied Physics Letters 64.9 (1994): 1085-1087.
    [13] Kushwaha, Manvir S. "Classical band structure of periodic elastic composites." International Journal of Modern Physics B 10.09 (1996): 977-1094.
    [14] Martínez-Sala, Rosa, Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., and Meseguer, F. "Sound attenuation by sculpture." nature 378.6554 (1995): 241-241.
    [15] Sutter-Widmer, Daniel, Sofia Deloudi, and Walter Steurer. "Prediction of Bragg-scattering-induced band gaps in phononic quasicrystals." Physical Review B 75.9 (2007): 094304.
    [16] Yang, Wen-Pei, and Lien-Wen Chen. "The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator." Smart materials and structures 17.1 (2007): 015011.
    [17] Bousfia, A., El Boudouti, E. H., Djafari-Rouhani, B., Bria, D., Nougaoui, A., and Velasco, V. R. "Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures." Surface science 482 (2001): 1175-1180.
    [18] Manzanares-Martínez, Betsabe, Sánchez-Dehesa, J., Håkansson, A., Cervera, F., and Ramos-Mendieta, F. "Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems." Applied physics letters 85.1 (2004): 154-156.
    [19] Kushwaha, Manvir S. "Stop-bands for periodic metallic rods: Sculptures that can filter the noise." Applied Physics Letters 70.24 (1997): 3218-3220.
    [20] Liu, Zhengyou, Che Ting Chan, and Ping Sheng. "Three-component elastic wave band-gap material." Physical Review B 65.16 (2002): 165116.
    [21] Liu, Zhengyou, Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., and Sheng, P. "Locally resonant sonic materials." science 289.5485 (2000): 1734-1736.
    [22] Zhang, Xin, Zhengyou Liu, and Youyan Liu. "The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance." The European Physical Journal B-Condensed Matter and Complex Systems 42.4 (2004): 477-482.
    [23] Yeh, Jia-Yi. "Control analysis of the tunable phononic crystal with electrorheological material." Physica B: Condensed Matter 400.1-2 (2007): 137-144.
    [24] Ruzzene, M., and A. Baz. "Control of wave propagation in periodic composite rods using shape memory inserts." J. Vib. Acoust. 122.2 (2000): 151-159.
    [25] Chen, T., M. Ruzzene, and A. Baz. "Control of wave propagation in composite rods using shape memory inserts: theory and experiments." Journal of Vibration and control 6.7 (2000): 1065-1081.
    [26] Phani, A. Srikantha, J. Woodhouse, and N. A. Fleck. "Wave propagation in two-dimensional periodic lattices." The Journal of the Acoustical Society of America 119.4 (2006): 1995-2005.
    [27] Bertoldi, Katia, and M. C. Boyce. "Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures." Physical Review B 77.5 (2008): 052105.
    [28] Thomas, Edwin L., Taras Gorishnyy, and Martin Maldovan. "Colloidal crystals go hypersonic." Nature materials 5.10 (2006): 773-774.
    [29] Wen, Jihong., Wang, G., Yu, D., Zhao, H., and Liu, Y. "Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure." Journal of Applied Physics 97.11 (2005): 114907.
    [30] Sigalas, M. M. "Elastic wave band gaps and defect states in two-dimensional composites." The Journal of the Acoustical Society of America 101.3 (1997): 1256-1261.
    [31] Wu, Fugen., Hou, Z., Liu, Z., and Liu, Y. "Point defect states in two-dimensional phononic crystals." Physics Letters A 292.3 (2001): 198-202.
    [32] Miyashita, Toyokatsu. "Sonic crystals and sonic wave-guides." Measurement Science and Technology 16.5 (2005): R47.
    [33] Zhang, Xin., Liu, Z., Liu, Y., and Wu, F. "Defect states in 2D acoustic band-gap materials with bend-shaped linear defects." Solid state communications 130.1-2 (2004): 67-71.
    [34] Senechal, Marjorie. Quasicrystals and geometry. CUP Archive, (1996).
    [35] Gratias, D., A. Katz, and M. Quiquandon. "Geometry of approximant structures in quasicrystals." Journal of Physics: Condensed Matter 7.48 (1995): 9101.
    [36] Cheng, Samuel SM. "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems." Physical Review B 59.6 (1999): 4091.
    [37] Steurer, Walter, and Daniel Sutter-Widmer. "Photonic and phononic quasicrystals." Journal of Physics D: Applied Physics 40.13 (2007): R229.
    [38] Wang, Kang. "Light localization in photonic band gaps of quasiperiodic dielectric structures." Physical Review B 82.4 (2010): 045119.
    [39] Zhang, Mingda, Wei Zhong, and Xiangdong Zhang. "Defect-free localized modes and coupled-resonator acoustic waveguides constructed in two-dimensional phononic quasicrystals." Journal of Applied Physics 111.10 (2012): 104314.
    [40] Pal, Raj Kumar, Matheus IN Rosa, and Massimo Ruzzene. "Topological bands and localized vibration modes in quasiperiodic beams." New Journal of Physics 21.9 (2019): 093017.
    [41] 拓樸學:取自https://www.nobelprize.org/prizes/physics/2016/press-release/
    [42] Klitzing, K. V., Gerhard Dorda, and Michael Pepper. "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance." Physical Review Letters 45.6 (1980): 494.
    [43] Thouless, David J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. "Quantized Hall conductance in a two-dimensional periodic potential." Physical review letters 49.6 (1982): 405.
    [44] Fukui, Takahiro, Yasuhiro Hatsugai, and Hiroshi Suzuki. "Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances." Journal of the Physical Society of Japan 74.6 (2005): 1674-1677.
    [45] Niu, Qian, Ds J. Thouless, and Yong-Shi Wu. "Quantized Hall conductance as a topological invariant." Physical Review B 31.6 (1985): 3372.
    [46] Kane, Charles L. "Topological Band Theory and the ℤ2 Invariant." Contemporary Concepts of Condensed Matter Science. Vol. 6. Elsevier, (2013): 3-34.
    [47] Berry, Michael Victor. "Quantal phase factors accompanying adiabatic changes." Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392.1802 (1984): 45-57.
    [48] Hatsugai, Yasuhiro. "Chern number and edge states in the integer quantum Hall effect." Physical review letters 71.22 (1993): 3697.
    [49] Zhang, Yuanbo., Tan, Y. W., Stormer, H. L., and Kim, P. "Experimental observation of the quantum Hall effect and Berry's phase in graphene." nature 438.7065 (2005): 201-204.
    [50] Lu, Jiuyang., Qiu, C., Ye, L., Fan, X., Ke, M., Zhang, F., and Liu, Z. "Observation of topological valley transport of sound in sonic crystals." Nature Physics 13.4 (2017): 369-374.
    [51] Lu, Jiuyang,. Qiu, C., Ke, M., and Liu, Z. "Valley vortex states in sonic crystals." Physical review letters 116.9 (2016): 093901.
    [52] Xia, Bai-Zhan., Liu, T. T., Huang, G. L., Dai, H. Q., Jiao, J. R., Zang, X. G., and Liu, J. "Topological phononic insulator with robust pseudospin-dependent transport." Physical Review B 96.9 (2017): 094106.
    [53] Yang, Yahui, Zhaoju Yang, and Baile Zhang. "Acoustic valley edge states in a graphene-like resonator system." Journal of Applied Physics 123.9 (2018): 091713.
    [54] Ni, Xiang,. Ni, X., Gorlach, M. A., Alu, A., and Khanikaev, A. B. "Topological edge states in acoustic Kagome lattices." New Journal of Physics 19.5 (2017): 055002.
    [55] Pankratov, O. A., S. V. Pakhomov, and B. A. Volkov. "Supersymmetry in heterojunctions: Band-inverting contact on the basis of PbSnTe and HgCdTe." Solid state communications 61.2 (1987): 93-96.
    [56] König, Markus, "Quantum spin Hall insulator state in HgTe quantum wells." Science 318.5851 (2007): 766-770.
    [57] Bernevig, B. Andrei, and Shou-Cheng Zhang. "Quantum spin Hall effect." Physical review letters 96.10 (2006): 106802.
    [58] Kane, Charles L., and Eugene J. Mele. "Quantum spin Hall effect in graphene." Physical review letters 95.22 (2005): 226801.
    [59] Feng, Wanxiang, "First-principles investigations on the berry phase effect in spin–orbit coupling materials." Computational Materials Science 112 (2016): 428-447.
    [60] Bernevig, B. Andrei, Taylor L. Hughes, and Shou-Cheng Zhang. "Quantum spin Hall effect and topological phase transition in HgTe quantum wells." science 314.5806 (2006): 1757-1761.
    [61] He, Cheng, Ni, X., Ge, H., Sun, X. C., Chen, Y. B., Lu, M. H.,and Chen, Y. F. "Acoustic topological insulator and robust one-way sound transport." Nature physics 12.12 (2016): 1124-1129.
    [62] Wu, Long-Hua, and Xiao Hu. "Scheme for achieving a topological photonic crystal by using dielectric material." Physical review letters 114.22 (2015): 223901.
    [63] 威格納塞茲晶胞:取自https://www.physics-in-a-nutshell.com/article/5/unit-cell-primitive-cell-and-wigner-seitz-cell
    [64] 拓樸材料、拓樸絕緣體與拓樸能帶理論(台灣物理雙月刊):取自https://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=235
    [65] Liu, Ting-Wei, and Fabio Semperlotti. "Tunable acoustic valley–hall edge states in reconfigurable phononic elastic waveguides." Physical Review Applied 9.1 (2018): 014001.
    [66] Chen, Jiu-Jiu, Huo, S. Y., Geng, Z. G., Huang, H. B., and Zhu, X. F. "Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface." AIP Advances 7.11 (2017): 115215.
    [67] 什麼是分數量子霍爾效應?取自:https://kknews.cc/zh-mo/science/yn6r2k.html
    [68] Wang, Yiquan, Wang, Y., Feng, S., and Li, Z. Y. "The effect of short-range and long-range orientational orders on the transmission properties of quasiperiodic photonic crystals." EPL (Europhysics Letters) 74.1 (2006): 49.
    [69] Rychły, Justyna, Szymon Mieszczak, and Jarosław W. Kłos. "Spin waves in planar quasicrystal of Penrose tiling." Journal of Magnetism and Magnetic Materials 450 (2018): 18-23.
    [70] Jin, Chongjun, Cheng, B., Man, B., Li, Z., Zhang, D., Ban, S., and Sun, B. "Band gap and wave guiding effect in a quasiperiodic photonic crystal." Applied physics letters 75.13 (1999): 1848-1850.
    [71] Jin, Chongjun, Cheng, B., Man, B., Li, Z., and Zhang, D. "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region." Physical Review B 61.16 (2000): 10762.
    [72] 維基百科編者. "原子軌域." 維基百科,自由的百科全書. (accessed 2020-02-16UTC05:52:00+00:00 (UTC).

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE