| 研究生: |
游順生 Yu, Shun-Sheng |
|---|---|
| 論文名稱: |
電阻抗分析系統應用於細胞凋亡量化評估 On-line monitor for cell apoptosis behavior by electrical impedance analysis |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | hydrogen peroxide (H2O2) 、細胞凋亡 、細胞電阻抗分析 、N-acetly-L-cysteine (NAC) |
| 外文關鍵詞: | apoptosis, electric impedance sensing system (EIS), N-acetly-L-cysteine (NAC), hydrogen peroxide (H2O2) |
| 相關次數: | 點閱:106 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞組織學上,如何判斷培養細胞的健康與行為,常使用的方法:光學顯微鏡觀察其形態上的變化、MTT分析法判斷細胞存活率。然而諸如以上各項技術,雖然可以約略窺探細胞內外資訊,但仍有其缺點:(1)無法準確量化 (2) 花費大量人力、時間 (3) 無法做即時性量測。因此本論文期望以電阻抗的量測解決上述缺失,它於生物醫學與臨床研究上是一項新的開發量測工具,其主要為利用生物不同組織既有的電特性(阻抗、導納、相角與頻率響應)所獲取的特徵響應,以及組織間的差異,做為直接量測或間接定量。目前在電阻抗分析量測上,已被廣泛應用在於生醫材料、藥物開發、環境檢測、細胞培養等各項研究與應用上。
本研究利用電阻抗系統,加上連續攝影,對細胞進行即時性電阻抗及細胞生長形態的觀測,評估細胞形態上的變化與細胞凋亡間的關聯。結果顯示細胞受到hydrogen peroxide (H2O2)的氧化傷害而產生凋亡時,會使得粒線體膜電位下降,並失去原有製造ATP的能力,此時細胞膜無法維持其內外層的對稱性,此時大量分佈於細胞膜內層的phoshpatidylserine(PS)會翻轉到外層,造成細胞電阻值明顯增加。最後加入N-acetly-L-cysteine (NAC)這類抗氧化劑後,則能使細胞免於氧化自由基造成的傷害。實驗結果將與傳統MTT、DNA fragment及流式細胞儀量測結果互相比對驗證,使得實驗數據更具公信力。
Biologically, there are a lot of methods to evaluate the condition and motion of cells, including observing morphological change of cells with microscope, assassing cell viability with MTT assay, tracing the distribution of peudopods and fluorescence. All of these methods are hard to achieve, real-time quantify and the cost is higher. An alternative on-line method to monitor cell attachment or detachment is electric impedance sensing system (EIS). This measuring method revealed several importatnt physical parameters, such as impedance(Z), admittance(R), phase angle, and frequency response.EIS is also to quantify. Recently, EIS has been applied to cell behavior quantifying , environmental monitoring, pharmaceutical screening and testing of biocompatibility.
In this thesis, we evaluated the relationship between cell apoptosisand the change of morphology in real-time by EIS. When cells startedap-optosis, the membrane potential of mitochondria decreased and ATP could not be produced. Because of balance between cell membrane inner and outer was disrupted and phoshpatidylserine(PS) in the inner layer of the cell membrane became inverted. This resulted in the change of cellular impedance. Result descried Then we tried to add an antioxidant, N-acetly-L-cysteine (NAC), to prevent cells from reactive oxygen species damage and record the change of cellular impedance again. All of these data are recorded with EIS and a series of microphotography. The result is consistent with traditional methods, MTT assay and DNA fragment.
[1] Lo CM, Keese CR, Giaever I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance
sensing. Biophys J., 69:2800-2807, 1995.
[2] Pethig R. Dielectric properties of biological materials: biophysical and medical application. IEEE Trans., EI-
19:453-474, 1984.
[3] Webster JG. Electrical impedance tomography. Adam Hilger, 1990.
[4] Webster G. Electrical impedance tomography. IEEE Trans., EE-9: 213 -260, 1989.
[5] Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics. Academic Press, 2000.
[6] Giaever I, Keese CR. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl
Acad Sci USA., 81(12): 3761-3764, 1984.
[7] Giaever I, Keese CR. Micromotion of mammalian cells measured electically. Proc Natl Acad Sci USA., 81(17):7896-
7900, 1991.
[8] Walz D, Berg H, Milazzo G. Bioelectrochemistry of cells and tissues. Bikhauser Boston Germany, 1995.
[9] Coster HGL, Chilcott T, Coster ACF. Impedance spectroscopy of interfaces membrances and ultrastructrures.
Bioelectrochem Bioenerg., 40:79-98, 1996.
[10] Giaever I, Keese CR, Wegener J. Electric cell-substrate impedance sensing(ECIS) as a noninvasive means to
monitor th kinetics of cell spreading to artficial surfaces. Exp Cell Res., 259(1):158-166.
[11] Sackmann E, Hillebrandt H, Abdelghani-Jacquin C, Abdelghani A. Cell-based biosensor for inflammatory agents
detection. Mater Sci Eng., C22:67-72, 2002.
[12] Kataoka N, Iwaki K, Hashimoto K, Mochizuki S, Ogasawara Y, Sato M, Tsujioka K, Kajia F. Measurements of
endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during
monocyte adhesion. Proc Natl Acad Sci USA., 99(24):15638-15643, 2002.
[13] Xiao C, Lachance B, Sunahara G, Htluong J. Assessment of cytotoxicity using electric cell-substrate impedance
sensing: concentration and time response function approach. Anal Chem., 74(22):5748-53, 2002.
[14] Giaever I, Walker SR, Wegener J, Keese CR. Electric wound-healing assay for cells in vitro. Proc Natl Acad Sci
USA., 101(6):1554-1559, 2004.
[15] Chang KC, Anthony EE, Seung-IK J, Kenneth DK, Philip DR. An endothelial cell compatible biosensor fabricated
using optically thin indium tin oxide silicon nitride electrodes. Biosens Bioelectron., 22(11):2585-2590, 2007.
[16] Giaever I, Haugarvoll E, Laane MM, Campbell CE. Monitoring viral-induced cell death using electric cell-
substrate impedance sensing. Biosens Bioelectron., 23(4):536-542, 2007.
[17] Zhang X, Liao R, Qiu Y. Impedance-based monitoring of ongoing cardiomyocyte death induced by tumor necrosis
factor-α. Biophys J., 96(5):1985-1991, 2009.
[18] Dynlacht BD. Regulaton of transcription by proteins that control the cell cycle. Nature, 389:149-152, 1997.
[19] Karp G. 細胞與分子生物學觀念與實驗. 合記圖書出版社, 2004.
[20] Regula KM, Kirshenbaum LA. Apoptosis of ventricular myocytes: a mean to an end. J Mol Cell Cardiol., 38:3-13,
2005.
[21] Gupta S, Knowlton A. A, HSP60, Bax, apoptosis and the heart. J Cell Mol Med., 9:51-58, 2005.
[22] Agar N, Young, Melanogenesis AR. A photoprotective response to DNA damage. Mutat Res., 571:121-132, 2005.
[23] Weil M, Jacobson MD, Coles HSR, Davies TJ, Gardner RL, Raff KD, Raff MC. Constitutive expression of the
machinery for programmed cell death. J. Cell Biol., 133:1053-1059, 1996.
[24] Smith AH, Goycolea M, Haque R, Biggs ML. Marked increase in bladder and lung cancer mortality in a region of
Northern Chile due to arsenic in drinking water. Am J Epidemiol., 147(7):660-669, 1998.
[25] Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell, 9(3):459-470, 2002.
[26] Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol
Med., 28(9):1387 – 1404, 2000.
[27] Termini J. Hydroperoxide-induced DNA damage and mutations. Mutat Res., 450(1-2):107-124, 2000.
[28] Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol., 68:251-306, 1980.
[29] Elza C, Bruin D, Medema JP. Apoptosis and non-apoptotic deaths in cancer development and treatment response.
Cancer Treat Rev., 34(8):737-749, 2008.
[30] Arends MJ, Morris RG, Wyllie AH. Apoptosis The role of the endonuclease. Am J Pathol., 136:593-608, 1990.
[31] Hengartner MO. The biochemistry of apoptosis. Nature, 407: 770- 776, 2000.
[32] Szabo C. Mechanisms of cell necrosis. Crit Care Med., 33:530 -534, 2005.
[33] Reiter RJ. Oxygen radical detoxification processes during aging: the functional importance of melatonin. Aging
(Milano) 7(5):340 -351, 1995.
[34] Fridovich I. The biology of oxygen radicals. Science, 201:870 -875, 1978.
[35] Hu LF, Lu M, Wu ZY, Wong PTH, Bian JS. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of
mitochondrial function. Mol Pharmacol., 75(1):27-34, 2009.
[36] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in
tissue kinetics. Br J
Cancer., 26(4):239-257, 1972.
[37] Jeong SO, Pae HO, Oh GS, Jeong GS, Lee BS, Lee S, Kim DY, Rhew HY, Lee KM, Chung HT. Hydrogen sulfide
potentiates interleukin-1β - induced nitric oxide production via enhancement of extracellular signal-regulated
kinase activation in rat vascular smomth muscle cells. Biochem and Biophys Res Commun., 345:938-944, 2006.
[38] Chen L, Liu L, Yin J, Luo Y, Huang S. Hydrogen peroxide- induced neuronal apoptosis is associated with
inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol.,
41:1284-1295, 2009.
[39] Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in
vitro. Science, 29:213-251, 1988.
[40] Dizdaroglu M, Rao G, Halliwell B, Gajewski E. Damage to the DNA bases in mammalian chromatin by hydrogen
peroxide in the presence of ferric and cupric ions. Arch Biochim Biophys., 285(2): 317-324, 1991.
[41] Michalik V, Spotheim MM, Charlier M. Calculation of hydroxyl radical attack on different forms of DNA. J Biomol
Struct Dyn., 13:565-575, 1995.
[42] Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now. J Lab
Clin Med., 119: 598- 620, 1992.
[43] Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of
coronary heart disease in men. N Engl J Med., 20:145-160, 1993.
[44] Mello FAC, Meneghini R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by
the Haber-Weiss reaction. Biochim Biophys Acta., 781:56-63, 1984.
[45] Halliwell B, Gutteridge JMC. Free radicals in biology and medicine
oxford. Oxford University Press, 1986.
[46] Jacobson. Reactive oxygen species and programmed cell death. Trends Biochem Sci., 21:83-86, 1996.
[47] Lee YJ, Cho HN, Soh JW, Jhon GJ, Cho CK, Chung HY, Bae S, Lee SJ, Lee YS. Oxidative stress- induced apoptosis
is mediated by ERK 1/2 phosphorylation. Exp Cell Res., 291:251-266, 2003
[48] Lee YJ, Cho HN, Jeoung DI, Soh JW, Cho CK, Bae S, Chung HY, Lee SJ, Lee YS. HSP25 overexpression attenuates
oxidative stress-induce apoptosis: roles of ERK 1/2 signaling and manganese superoxide dismutase. Free Radic Biol
Med., 36:429-444, 2004.
[49] Conger AD, Fairchild LM. Breakage of chromosomes by oxygen. Proc Natl Aca Sci., 38:289-299, 1952.
[50] Ames BN, Shigenaga MK. Oxidants are a major contributor to aging. Ann N Y Acad Sci., 663:85-96, 1992.
[51] Curtin JF, Donovan M, Cotter TG. Regulation and measurement of oxidative stress in apoptosis. J Immunol
Methods., 265:49-72, 2002.
[52] Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T. Oxidative damage to DNA in diabetes
mellitus. Lancet, 347:444-448, 1996.
[53] Mahadik SP ,Scheffer RE. Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins
Leukot Essent Fatty. Acids., 55:45-54, 1996.
[54] Kuo RSL, Wang YM, Chen CJ. Role of reactive oxygen intermediates in Japanese encephalitis virus
infection in murine neuroblastoma cells. Neurosci Lett., 315:9-12, 2001.
[55] De Flora S, Cesarone CF, Balansky RM, Albini A. Chemopreventive properties and mechanisms of N-Acetylcysteine
The experimental background. J Cell Biochem., 22:33-41, 1995.
[56] Cotgreace IA. N-acetylcysteine pharmacological considerations and experimental and clinical applications. Adv
Pharmacol., 38:205 -207, 1997.
[57] Van Zandwijk N. N-acetylcysteine (NAC) and glutathione(GSH): antioxidant and chemopreventive properties with
special reference to lung cancer. J Cell Biochem Suppl. 22:24-32, 1995.
[58] Solen G. Radioprotective effect of N-acetylcysteine in vitro using the induction of DNA breaks as end-point. J
Radiat. Biol., 64:359- 366, 1993.
[59] Yunis AA, Lim LO, Arimura GK. DNA damage induced by chloramphenicol and nitroso-chloramphenicol: protection by
N-acetylcysteine. Respiration., 50:5-15, 1986.
[60] Chan JY, Stout DL, Becker FF. Protective role of thiols in carcinogen-induced DNA damage in rat liver.
Carcinogenesis., 7:192-214, 1986.
[61] Ferrari G, Yan CY, Greene LA. N-acetylcysteine prevents apoptoic death of neuronal cells. J Neurosci., 15:267-
280, 1995.
[62] Subirade I, Fernandez Y, Periquet A, MitjACILA S. Catechin protection of 3T3 swiss fibroblasts in culture under
oxidative stress. Humana Press Inc.Vol 47, 1995.
[63] Cho ES, Lee KW, Lee HJ. Cocoa procyanidins protect PC12 cells from hydrogen-peroxide-induced apoptosis by
inhibting activation. Mutat Res., 640(1-2):123-130, 2008.
[64] Yonezawa D, Sekiguchi F, Miyamato M, Taniguchi E, Honjo M, Masuko T, Nishikawa H, Kawabata A. A proteawactive
role of hydrogen sulfide against stressi in rat gastric mucoal epithelium. Toxicollagy. 241:11-18, 2007.
[65] Chen T, Wong YS. Selenocystine induces reative oxygen species – mediated apoptosis in human cancer cells.
Biomed Pharmacother., 63(2):105-113, 2009.
[66] Ferrari G, Yan CY, Greene LA. N-acetylcysteine prevents apoptoic death of neuronal cells. J Neurosci., 15:267-
280, 1995.
[67] Melov S, Ravenscroft J, Malik S, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR,
Lithgow GJ. Extension of life-span with superoxide dismutase/ catalase mimetics. Science, 289(5484):1567-1569, 2000.