簡易檢索 / 詳目顯示

研究生: 呂其和
Lu, Chi-He
論文名稱: 楔形體填充物之有限元素分析
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 59
中文關鍵詞: 填充物裂縫應力強度因子奇異性位移楔形有限元素奇異元素應力
外文關鍵詞: crack, displacement, SIF, inclusion, finite element method, wedge, stress, singularity, ABAQUS, FEM
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討楔形體在凹口尖端的應力場,以及加入填充物後之應力場,利用有限元素法分析之。楔形(Wedge)之幾何形狀不連續,常會發生應力集中,是結構物的弱點。楔形凹口內加入填充物補強,應力將重新分配,適當填充將延長結構物的使用年限。而建築結構物常會有裂縫,裂縫是楔形體展開角為 之特例,在裂縫中填入環氧樹脂補強是工程界常見的補強方法。本文以ABAQUS分析楔形加入填充物前後之力學行為,計算其應力變化,希望再進而求得其應力強度因子。

    none

    摘要......................................................I 誌謝.....................................................II 目錄....................................................III 表目錄....................................................V 圖目錄...................................................VI 第一章 緒論...............................................1 1-1 研究動機與文獻回顧....................................1 1-2 研究方法..............................................1 1-3 內容簡介..............................................2 第二章 基本公式...........................................3 2-1 彈性力學問題的建立....................................3 2-2 平面問題..............................................5 2-2-1 平面應變(Plane strain)問題..........................5 2-2-2 平面應力(Plane stress)問題..........................7 2-2-3 平面問題總結........................................7 2-2-4 艾雷應力函數(Airy’s stress function)...............8 第三章 楔形體應力奇異性分析..............................10 3-1 單一材料之楔形體(Wedge) .............................11 3-1-1 曳引力為零(Traction free) .........................12 3-1-2 固定端(Fixed end) .................................15 第四章 有限元素分析......................................17 4-1 有限元素法理論簡介...................................17 4-2 奇異元素(Singularity element) .......................21 4-3 套裝軟體:ABAQUS 6.3-1...............................23 4-4 利用ABAQUS/Standard計算應力強度因子..................26 第五章 數值結果與討論....................................31 5-1 驗證標準問題.........................................31 5-1-1 驗證中央裂縫平板(Center-cracked plate)問題.........31 5-1-2 驗證單邊裂縫平板(Single-edge-cracked plate)問題....39 5-1-3 驗證他人之相關研究.................................43 5-2 楔形角度形狀對應力之影響.............................47 5-3 加入填充物...........................................49 5-3-1 例1................................................50 5-3-2 例2................................................51 第六章 結論..............................................54 參考文獻.................................................55 附錄.....................................................57 範例程式碼...............................................57 自述.....................................................59

    Barsoum, R.S., On the use of isoparametric finite elements in linear fracture mechanics, International Journal for Numerical Methods in Engineering 10, 25-37, 1976.

    Bhargava, R.D. and Radhakrishna, H.C., Elliptic inclusion in orthotropic medium, J. Phys. Soc. Japan 19, 396-405, 1964.

    Bogy, D.B., Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading, ASME Journal of Applied Mechanics 35, 460-466,1968.

    Bogy, D.B., On the problem of edge-bonded elastic quarter-planes loaded at the boundary, International Journal of Solids and Structures 6, 1287-1313,1970.

    Boresi, A.P., Chong, K.P., Elasticity in Engineering Mechanics, Second edition, Elsevier Science Publishing Co., Inc., New York, 1987.

    Chen, Y.H. and Lu, T.J., On the path dependence of the J-integral in notch problems, International Journal of Solids and Structures 41, 607-618, 2004.

    Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J., Concepts and Applications of finite element analysis, Fourth edition, John Wiley & Sons. Inc., New York, 2002.

    Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. London A241, 376-396, 1957.

    Eshelby, J.D., The elastic field outside an ellipsoidal inclusion, Proc. Roy. Soc. London A252, 561-569, 1959.

    Filippi, S. and Lazzarin, P., Distributions of the elastic principal stress due to notches in finite size plates and rounded bars uniaxially loaded, International Journal of Fatigue 26, 377-391, 2004.

    Gdoutos, E.E., Fracture Mechanics: An Introduction, Kluwer Academic Publishers, Boston, 1993.

    Godfrey, D.E.R., Generalized plane stress in an elastic wedge under isotropic loads, Quarter Journal of Mechanics and Applied Mechanics 8(Part 2), 226-236, 1954.

    Hein, V.L. and Erdogan, F., Stress singularities in a two-material wedge, International Journal of Fracture Mechanics 7, 317-330, 1971.

    Hwu, C. and Ting, T.C.T., Two dimensional problems of the anisotropic elastic solid with an elliptic inclusion, Q. J. Mech. Appl. Math. 42, 553-572, 1989.

    Jaswon, M.A. and Bhargava, R.D., Two-dimensional elastic inclusion problems, Proc. Camb. Phil. Soc. 57, 669-680, 1961.

    Lazzarin, P., Tovo, R. and Filippi, S., Elastic stress distributions in finite size plates with edge notches, International Journal of Fracture 91, 269-282, 1998.

    Lucas, R.A. and Erdogan, F., Quasi-Static transient thermal stress in an infinite wedge, International Journal of Solids and Structure 2, 205-222, 1966.

    Muskhelishvili, N.I., Some basic problems of the mathematical theory of elasticity, P. Noordhoff, Groningen, Holland, 1953.

    Reddy, J.N., An Introduction to the Finite Element Method, Second Edition, McGraw-Hill Book Company, Singapore, 1993.

    Sandord, R.J., Principles of Fracture Mechanics, Pearson Education, Inc., Upper Saddle River, New Jersey, 2002.

    Tranter, C.J., The use of the Mellin transform in finding the stress distribution in an infinity wedge, Quarter Journal of Mechanics and Applied Mechanics 1, 125-130, 1948.

    Williams, M.L., Stress singularity resulting from various boundary condition in angular corners of plates in extension, ASME Journal of Applied Mechanics 74, 526-528, 1952.

    Yang, H.C. and Chou, Y.T., Generalized plane problems of an elliptic inclusion in an anisotropic medium, J. Appl. Mech. 44, 437-444, 1976.

    陳重德, 楔形結構應力奇異性之有限元素分析, 碩士論文, 國立成功大學機械工程研究所, 2000.

    蔡耀慶, 填充物對異向性裂紋體之影響, 碩士論文, 國立成功大學土木工程研究所, 2003.

    錢偉長, 彈性力學, 亞東出版, 台北, 1987.

    下載圖示 校內:立即公開
    校外:2004-07-16公開
    QR CODE