| 研究生: |
陳彥廷 Chen, Yen-Ting |
|---|---|
| 論文名稱: |
高效能磁控濺鍍製備成分梯度TiO2-Y2O3陣列奈米柱複合材料及其光催化應用 Fabrication of composition spread of TiO2-Y2O3 nanorod-array composites using combinatorial reactive magnetron sputtering for photocatalytic applications |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 光觸媒 、奈米複合材料 、高效能反應磁控濺鍍 、成分梯度 、陣列式奈米柱 、電荷捕捉 |
| 外文關鍵詞: | Photocatalyst, nanocomposite, combinatorial reactive magnetron sputtering, composition spread, nanorod arrays, charge trapping |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於光催化應用,這份研究提出一個創新的概念能幫助光生電子-電洞對的分離,達到增強光觸媒材料的性質,是利用高介電常數材料所提供的氧缺陷在光催化反應進行中時當作捕捉電荷的陷阱,抑制複合作用。
基於奈米柱狀材料有助於電荷於材料傳輸的認知,本研究利用高效能反應式磁控濺鍍設備製備出具有成分梯度的Y2O3-TiO2 陣列奈米柱複合材料,以利於對上述所提概念做綜觀全面的探討。為了得到理想的Y2O3-TiO2 陣列奈米柱複合材料,必須先取得各自單一材料的合適參數,然後搭配設備中可移動的遮板做出有厚度梯度變化的試片。本研究所提出的嶄新概念不僅創新,更是大膽嘗試,將被視為材料難以克服的缺點加以利用,獲取更好的特性。
XRD, SEM, TEM, UV-Vis, PL 和XPS等儀器被用來研究材料趨勢變化的特性,包含相、形貌、微結構、光學、成分和化學鍵結的分析,以光降解亞甲藍水溶液並進行循環測試量測光催化的性質。最後結果顯示具有適量的Y2O3輔助TiO2 能夠展現更好的光催化性能。
To enhance the separation of the photo-generated electron-hole pairs to obtain high photocatalytic activity of materials, an innovative concept was proposed in this research, where oxygen vacancies in a high-k material are utilized as charge carrier traps to inhibit the recombination. In addition, nanorod structures were aimed to improve charge carrier transport. Based on these ideas, a comprehensive investigation of Y2O3-TiO2 nanorod-array composite composition spread was employed by using combinatorial reactive magnetron sputtering. The novel idea incorporating the high-k material, Y2O3, into TiO2 is to compromise the disadvantages of each material and to acquire a synergistic photocatalytic performance through a close coupling.
The excellent Y2O3-TiO2 nanocomposite composition spread was achieved by obtaining optimal conditions of each constituent first and then a moving shutter was suitably controlled to make thickness gradients of Y2O3 and TiO2 across a substrate.
To study the various features as a function of compositions, the Y2O3-TiO2 nanocomposite composition spread was cut into six pieces from #1 (Y2O3-rich) to #6 (TiO2-rich) along the composition variation direction. The characterization tools such as XRD, SEM, TEM, UV-Vis, PL, and XPS were employed to determine the various characteristics, including the phases, morphologies, microstructures, optical properties, compositions, and chemical bondings. Photodegradation activities were determined by decomposing 5 ppm of MB for 180 min using 30 W UV irradiation. It was found that the sample #6 (TiO2-rich) exhibited the superior performance, in which 60% of MB was decomposed in 180 min, even outmatched that of TiO2 nanorods, indicating the coupling effect between Y2O3 and TiO2 indeed enhanced the TiO2 photocatalytic properties. Cycling test was also used to examine the stability of the sample #6, in which consistent photocatalysis was observed throughout the three-cycle test, demonstrating it a promising photocatalyst for the application of environment sustainability.
The PL results manifested optimal oxygen vacancies were required to achieve synergistic photocatalysis, which was effectively achieved by incorporating a suitable amount of Y2O3. The sample but effective composition spread strategy demonstrated its value in accelerating exploration of optimal compositions from a wide range of composition variations.
1. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, "Nano-photocatalytic materials: possibilities and challenges", Advanced Materials 24, 229-251 (2012).
2. D. Scaife, "Oxide semiconductors in photoelectrochemical conversion of solar energy", Solar Energy 25, 41-54 (1980).
3. F. Birol, "World energy outlook", Paris: International Energy Agency, 1-7 (2008).
4. M. A. Delucchi, and M. Z. Jacobson, "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies", Energy Policy 39, 1170-1190 (2011).
5. H. Lund, "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply", Renewable Energy 31, 503-515 (2006).
6. P. M. Schenk, S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer, "Second generation biofuels: high-efficiency microalgae for biodiesel production", BioEnergy Research 1, 20-43 (2008).
7. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis", Chemical Reviews 95, 69-96 (1995).
8. A. Hagfeldt, and M. Graetzel, "Light-induced redox reactions in nanocrystalline systems", Chemical Reviews 95, 49-68 (1995).
9. M. A. Fox, and M. T. Dulay, "Heterogeneous photocatalysis", Chemical Reviews 93, 341-357 (1993).
10. A. Giwa, P. O. Nkeonye, K. A. Bello, and K. A. Kolawole, "Photocatalytic decolourization and degradation of C. I. basic blue 41 using TiO2 nanoparticles", Journal of Environmental Protection 03, 1063-1069 (2012).
11. R. Marschall, "Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity", Advanced Functional Materials 24, 2421-2440 (2014).
12. M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, "Fabrication of the low-resistive p-type ZnO by codoping method", Physica B: Condensed Matter 302, 140-148 (2001).
13. M. Joseph, H. Tabata, and T. Kawai, "p-Type electrical conduction in ZnO thin films by Ga and N codoping", Japanese Journal of Applied Physics 38, L1205-L1207 (1999).
14. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, "A comprehensive review of ZnO materials and devices", Journal of Applied Physics 98, 041301 (2005).
15. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, "Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors", Chemistry of materials 18, 867-871 (2006).
16. L. Gou, and C. J. Murphy, "Solution-phase synthesis of Cu2O nanocubes", Nano Letters 3, 231-234 (2003).
17. Y. Chang, J. J. Teo, and H. C. Zeng, "Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres", Langmuir 21, 1074-1079 (2005).
18. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, and K. Domen, "TaON and Ta3N5 as new visible light driven photocatalysts", Catalysis Today 78, 555-560 (2003).
19. C. M. Fang, E. Orhan, G. A. de Wijs, H. T. Hintzen, R. A. de Groot, R. Marchand, J. Y. Saillard, and G. de With, "The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5", Journal of Materials Chemistry 11, 1248-1252 (2001).
20. X. Feng, T. J. Latempa, J. I. Basham, G. K. Mor, O. K. Varghese, and C. A. Grimes, "Ta3N5 nanotube arrays for visible light water photoelectrolysis", Nano Letters 10, 948-952 (2010).
21. W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen, "Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods", The Journal of Physical Chemistry B 107, 1798-1803 (2003).
22. Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, and K. Domen, "Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting", Advanced Materials 25, 125-131 (2013).
23. J. H. Kennedy, and M. Anderman, "Photoelectrolysis of water at α‐Fe2O3 electrodes in acidic solution", Journal of the Electrochemical Society 130, 848-852 (1983).
24. K. Sivula, F. Le Formal, and M. Gratzel, "Solar water splitting: progress using hematite (alpha-Fe2O3) photoelectrodes", ChemSusChem 4, 432-449 (2011).
25. F. Wagner, and G. Somorjai, "Photocatalytic hydrogen production from water on Pt-free SrTiO3 in alkali hydroxide solutions", Nature 285, 559-560 (1980).
26. H. Reiche, W. W. Dunn, and A. J. Bard, "Heterogeneous photocatalytic and photosynthetic deposition of copper on Titanium dioxide and tungsten (VI) oxide powders", Journal of Physical Chemistry 83, 2248-2251 (1979).
27. Q. Li, T. Kako, and J. Ye, "WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation", Chem Commun (Camb) 46, 5352-5354 (2010).
28. M. N. Chong, B. Jin, C. W. Chow, and C. Saint, "Recent developments in photocatalytic water treatment technology: a review", Water Research 44, 2997-3027 (2010).
29. A. Fujishima, "Electrochemical photolysis of water at a semiconductor electrode", Nature 238, 37-38 (1972).
30. K. Hashimoto, H. Irie, and A. Fujishima, "TiO2 photocatalysis: A historical overview and future prospects", Japanese Journal of Applied Physics 44, 8269-8285 (2005).
31. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, "Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations", Journal of Physics and Chemistry of Solids 63, 1909-1920 (2002).
32. W. Choi, A. Termin, and M. R. Hoffmann, "The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics", The Journal of Physical Chemistry 98, 13669-13679 (1994).
33. J. H. Park, S. Kim, and A. J. Bard, "Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting", Nano letters 6, 24-28 (2006).
34. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, and Z. Zou, "Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2", Applied Catalysis B: Environmental 69, 138-144 (2007).
35. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, "Band gap narrowing of titanium dioxide by sulfur doping", Applied Physics Letters 81, 454-456 (2002).
36. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science 293, 269-271 (2001).
37. X. Li, N. Kikugawa, and J. Ye, "Nitrogen-doped lamellar niobic acid with visible light-responsive photocatalytic activity", Advanced Materials 20, 3816-3819 (2008).
38. C. Burda, Y. Lou, X. Chen, A. C. Samia, J. Stout, and J. L. Gole, "Enhanced nitrogen doping in TiO2 nanoparticles", Nano letters 3, 1049-1051 (2003).
39. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, "Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light", The Journal of Physical Chemistry B 108, 6004-6008 (2004).
40. K. Noworyta, and J. Augustynski, "Spectral photoresponses of carbon-doped TiO2 film electrodes", Electrochemical and Solid-State Letters 7, E31-E33 (2004).
41. A. Mukherji, R. Marschall, A. Tanksale, C. Sun, S. C. Smith, G. Q. Lu, and L. Wang, "N-doped CsTaWO6 as a new photocatalyst for hydrogen production from water splitting under solar irradiation", Advanced Functional Materials 21, 126-132 (2011).
42. D. Wang, Y. Zou, S. Wen, and D. Fan, "A passivated codoping approach to tailor the band edges of TiO2 for efficient photocatalytic degradation of organic pollutants", Applied Physics Letters 95, 012106 (2009).
43. M. Nasir, Z. Xi, M. Xing, J. Zhang, F. Chen, B. Tian, and S. Bagwasi, "Study of synergistic effect of Ce- and S-codoping on the enhancement of visible-light photocatalytic activity of TiO2", The Journal of Physical Chemistry C 117, 9520-9528 (2013).
44. I. S. Cho, C. H. Lee, Y. Feng, M. Logar, P. M. Rao, L. Cai, D. R. Kim, R. Sinclair, and X. Zheng, "Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance", Nature Communication 4, 1723 (2013).
45. Y. F. Li, D. Xu, J. I. Oh, W. Shen, X. Li, and Y. Yu, "Mechanistic study of codoped titania with nonmetal and metal ions: A case of C+Mo codoped TiO2", ACS Catalysis 2, 391-398 (2012).
46. A. Yamakata, T. A. Ishibashi, and H. Onishi, "Electron-and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy", The Journal of Physical Chemistry B 106, 9122-9125 (2002).
47. F. Lin, Y. Zhang, L. Wang, Y. Zhang, D. Wang, M. Yang, J. Yang, B. Zhang, Z. Jiang, and C. Li, "Highly efficient photocatalytic oxidation of sulfur-containing organic compounds and dyes on TiO2 with dual cocatalysts Pt and RuO2", Applied Catalysis B: Environmental 127, 363-370 (2012).
48. C. Zhang, and H. He, "A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature", Catalysis Today 126, 345-350 (2007).
49. E. M. Cordi, and J. L. Falconer, "Oxidation of volatile organic compounds on a Ag/Al2O3 catalyst", Applied Catalysis A: General 151, 179-191 (1997).
50. C. C. Hu, and H. Teng, "Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting", Journal of Catalysis 272, 1-8 (2010).
51. S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. Pijpers, and D. G. Nocera, "Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts", Science 334, 645-648 (2011).
52. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, "Highly active oxide photocathode for photoelectrochemical water reduction", Nature Materials 10, 456-461 (2011).
53. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production", Renewable and Sustainable Energy Reviews 11, 401-425 (2007).
54. K. Gurunathan, P. Maruthamuthu, and M. Sastri, "Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution", International Journal of Hydrogen Energy 22, 57-62 (1997).
55. J. S. Lee, K. H. You, and C. B. Park, "Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene", Advanced Materials 24, 1084-1088 (2012).
56. G. Williams, B. Seger, and P. V. Kamat, "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide", ACS nano 2, 1487-1491 (2008).
57. K. K. Manga, S. Wang, M. Jaiswal, Q. Bao, and K. P. Loh, "High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution", Advanced Materials 22, 5265-5270 (2010).
58. K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, "Preparation of graphene–TiO2 composites with enhanced photocatalytic activity", New Journal Chemistry. 35, 353-359 (2011).
59. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, and L. Jiang, "Hierarchically ordered macro− mesoporous TiO2− graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities", ACS nano 5, 590-596 (2010).
60. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, "P25-graphene composite as a high performance photocatalyst", ACS nano 4, 380-386 (2009).
61. A. K. Geim, and K. S. Novoselov, "The rise of graphene", Nature Materials 6, 183-191 (2007).
62. A. K. Geim, "Graphene: status and prospects", Science 324, 1530-1534 (2009).
63. P. H. Wöbkenberg, G. Eda, D. S. Leem, J. C. de Mello, D. D. Bradley, M. Chhowalla, and T. D. Anthopoulos, "Reduced graphene oxide electrodes for large area organic electronics", Advanced Materials 23, 1558-1562 (2011).
64. L. Wang, K. Y. Pu, J. Li, X. Qi, H. Li, H. Zhang, C. Fan, and B. Liu, "A graphene–conjugated oligomer hybrid probe for light‐up sensing of lectin and escherichia coli", Advanced Materials 23, 4386-4391 (2011).
65. Y. Ju Nam, and J. R. Lead, "Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications", Science of Total Environment 400, 396-414 (2008).
66. A. Selloni, "Crystal growth: anatase shows its reactive side", Nature Materials 7, 613-615 (2008).
67. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, and J. Ye, "Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties", Journal of American Chemical Society 133, 6490-6492 (2011).
68. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, "Anatase TiO2 single crystals with a large percentage of reactive facets", Nature 453, 638-641 (2008).
69. M. Lazzeri, A. Vittadini, and A. Selloni, "Structure and energetics of stoichiometricTiO2 anatase surfaces", Physical Review B 63, 155409 (2001).
70. G. Xi, and J. Ye, "Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties", Chem Commun (Camb) 46, 1893-1895 (2010).
71. Y. Chen, J. C. Crittenden, S. Hackney, L. Sutter, and D. W. Hand, "Preparation of a novel TiO2-based pn junction nanotube photocatalyst", Environmental Science & Technology 39, 1201-1208 (2005).
72. Y. Bi, and J. Ye, "Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties", Chemistry 16, 10327-10331 (2010).
73. Y. Bi, and J. Ye, "In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties", Chem Commun (Camb) 6551-6553 (2009).
74. S. Chatterjee, K. Bhattacharyya, P. Ayyub, and A. Tyagi, "Photocatalytic properties of one-dimensional nanostructured titanates", The Journal of Physical Chemistry C 114, 9424-9430 (2010).
75. I. S. Cho, S. Lee, J. H. Noh, D. W. Kim, D. K. Lee, H. S. Jung, D.-W. Kim, and K. S. Hong, "SrNb2O6 nanotubes with enhanced photocatalytic activity", Journal of Materials Chemistry 20, 3979-3983 (2010).
76. J. Jang, H. Kim, U. Joshi, J. Jang, and J. Lee, "Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation", International Journal of Hydrogen Energy 33, 5975-5980 (2008).
77. Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, and H. Fan, "Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications", CrystEngComm 13, 3506-3510 (2011).
78. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays", Nano Letters 5, 191-195 (2005).
79. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays", Nano Letters 7, 69-74 (2007).
80. J. Yu, G. Dai, and B. Huang, "Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays", The Journal of Physical Chemistry C 113, 16394-16401 (2009).
81. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells", Nano Letters 6, 215-218 (2006).
82. O. K. Varghese, M. Paulose, and C. A. Grimes, "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells", Nature Nanotechnology 4, 592-597 (2009).
83. P. Zhang, L. Wang, X. Zhang, C. Shao, J. Hu, and G. Shao, "SnO2-core carbon-shell composite nanotubes with enhanced photocurrent and photocatalytic performance", Applied Catalysis B: Environmental 166-167, 193-201 (2015).
84. W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. C. Lee, and R. Yang, "Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications", Nano Letters 12, 655-660 (2012).
85. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, "Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation", Nano Letters 10, 1088-1092 (2010).
86. V. A. N. de Carvalho, R. A. d. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, "Highly oriented hematite nanorods arrays for photoelectrochemical water splitting", Journal of Power Sources 205, 525-529 (2012).
87. Y. Hou, F. Zuo, A. Dagg, and P. Feng, "Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting", Nano Letters 12, 6464-6473 (2012).
88. A. Mao, W. J. Kim, J. K. Kim, K. Shin, G. Y. Han, and J. H. Park, "Surface roughened 1-D Au host nanorods for visible light induced photocatalyst", Electrochimica Acta 97, 404-408 (2013).
89. C. J. Murphy, and N. R. Jana, "Controlling the aspect ratio of inorganic nanorods and nanowires", Advanced Materials 14, 80-82 (2002).
90. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties", The Journal of Physical Chemistry B 101, 6661-6664 (1997).
91. S. Link, M. Mohamed, and M. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant", The Journal of Physical Chemistry B 103, 3073-3077 (1999).
92. F. Kim, J. H. Song, and P. Yang, " Photochemical synthesis of gold nanorods ", Journal of American Chemical Society 124, 14316-14317 (2002).
93. J. Robertson, "High dielectric constant oxides", The European Physical Journal Applied Physics 28, 265-291 (2004).
94. A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, "Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films", Journal of Applied Physics 90, 6466-6475 (2001).
95. J. H. Choi, Y. Mao, and J. P. Chang, "Development of hafnium based high-k materials—A review", Materials Science and Engineering R 72, 97-136 (2011).
96. C. León, M. Lucia, and J. Santamaria, "Correlated ion hopping in single-crystal yttria-stabilized zirconia", Physical Review B 55, 882-887 (1997).
97. E. Y. Sun, P. F. Becher, K. P. Plucknett, C. H. Hsueh, K. B. Alexander, S. B. Waters, K. Hirao, and M. E. Brito, "Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives", Journal of the American Ceramic Society 81, 2831-2840 (1998).
98. M. Guazzato, M. Albakry, S. P. Ringer, and M. V. Swain, "Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics", Dent Mater 20, 449-456 (2004).
99. G. A. Sotiriou, M. Schneider, and S. E. Pratsinis, "Color-tunable nanophosphors by codoping flame-made Y2O3 with Tb and Eu", The Journal of Physical Chemistry C 115, 1084-1089 (2010).
100. J. A. Capobianco, F. Vetrone, J. C. Boyer, A. Speghini, and M. Bettinelli, "Enhancement of red emission (4F9/2→ 4I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3: Er3+", The Journal of Physical Chemistry B 106, 1181-1187 (2002).
101. G. K. Das, and T. T. Y. Tan, "Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes", The Journal of Physical Chemistry C 112, 11211-11217 (2008).
102. Y. Mao, T. Tran, X. Guo, J. Y. Huang, C. K. Shih, K. L. Wang, and J. P. Chang, "Luminescence of nanocrystalline erbium-doped yttria", Advanced Functional Materials 19, 748-754 (2009).
103. X. Ruan, and M. Kaviany, "Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders", Physical Review B 73, 155422 (2006).
104. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "Czochralski growth and laser parameters of RE 3+-doped Y2O3 and Sc2O3", Ceramics International 26, 589-592 (2000).
105. W. C. Wang, M. Badylevich, V. V. Afanas’ev, A. Stesmans, C. Adelmann, S. Van Elshocht, J. A. Kittl, M. Lukosius, C. Walczyk, and C. Wenger, "Band alignment and electron traps in Y2O3 layers on (100) Si", Applied Physics Letters 95, 132903 (2009).
106. H. J. Quah, and K. Y. Cheong, "Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride", Nanoscale Research Letters 8, 1-7 (2013).
107. J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, 1785-1791 (2000).
108. J. Zheng, G. Ceder, T. Maxisch, W. K. Chim, and W. K. Choi, "Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: First-principles study", Physical Review B 73, 104101 (2006).
109. H. Tan, Z. Zhao, W. B. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, and Z. Sun, "Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3", ACS Appl Mater Interfaces 6, 19184-19190 (2014).
110. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, and M. Jiang, "Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania", Energy & Environmental Science 6, 3007-3014 (2013).
111. Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, and M. H. Whangbo, "Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity", Chem Commun (Camb) 48, 5733-5735 (2012).
112. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, and V. Dal Santo, "Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles", Journal American of Chemical Society 134, 7600-7603 (2012).
113. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, "Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light", Journal of the American Chemical Society 132, 11856-11857 (2010).
114. X. Yu, B. Kim, and Y. K. Kim, "Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation-induced surface defects", ACS Catalysis 3, 2479-2486 (2013).
115. H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, and Z. Sun, "A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity", Nanoscale 6, 10216-10223 (2014).
116. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, and Y. Dai, "Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO", ACS Apply Material Interfaces 4, 4024-4030 (2012).
117. Y. Lv, W. Yao, X. Ma, C. Pan, R. Zong, and Y. Zhu, "The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1−x photocatalyst", Catalysis Science & Technology 3, 3136-3146 (2013).
118. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, and Y. Zhu, "Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization", Langmuir 29, 3097-4105 (2013).
119. J. Wang, P. Liu, X. Fu, Z. Li, W. Han, and X. Wang, "Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes", Langmuir 25, 1218-1223 (2008).
120. P. Kajitvichyanukul, J. Ananpattarachai, and S. Pongpom, "Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process", Science and Technology of Advanced Materials 6, 352-358 (2005).
121. E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. M. D. MacElroy, J. A. Sullivan, and K. R. Thampi, "Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol–gel processes in the presence of melamine borate: reflections through photocatalysis", The Journal of Physical Chemistry C 116, 16511-16521 (2012).
122. C. Anderson and A. J. Bard, "An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis", The Journal of Physical Chemistry 99, 9882-9885 (1995).
123. T. M. Breault, and B. M. Bartlett, "Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye", The Journal of Physical Chemistry C 116, 5986-5994 (2012).
124. M. J. Kim, S. H. Park, and Y. D. Huh, "Photocatalytic activities of hydrothermally synthesized Zn2SnO4", Bulletin of the Korean Chemical Society 32, 1757-1760 (2011).
125. X. Zhou, F. Peng, H. Wang, and H. Yu, "Boron and nitrogen-codoped TiO2 nanorods: Synthesis, characterization, and photoelectrochemical properties", Journal of Solid State Chemistry 184, 3002-3007 (2011).
126. K. Obata, H. Irie, and K. Hashimoto, "Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light", Chemical Physics 339, 124-132 (2007).
127. K. Choy, "Chemical vapour deposition of coatings", Progress in Materials Science 48, 57-170 (2003).
128. A. Mubarak, E. Hamzah, and M. Toff, "Review of physical vapour deposition (PVD) techniques for hard coating", Jurnal Mekanikal 42-51 (2005).
129. V. Kislyuk, and O. Dimitriev, "Nanorods and nanotubes for solar cells", Journal of Nanoscience and Nanotechnology 8, 131-148 (2008).
130. T. H. Yang, Y. W. Harn, K. C. Chiu, C. L. Fan, and J. M. Wu, "Promising electron field emitters composed of conducting perovskite LaNiO3 shells on ZnO nanorod arrays", Journal of Materials Chemistry 22, 17071-17078 (2012).
131. N. Jie, Z. Yu, Z. Qin, and Z. Zhengjun, "Morphology in-design deposition of HfO2 thin films", Journal of the American Ceramic Society 91, 3458-3460 (2008).
132. Y. Zhao, D. Ye, G. C. Wang, and T. M. Lu, "Designing nanostructures by glancing angle deposition", Nanotubes and Nanowires 5219, 59-73 (2003).
133. M. M. Hawkeye, and M. J. Brett, "Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 25, 1317-1335 (2007).
134. J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings", Journal of Vacuum Science and Technology 11, 666-670 (1974).
135. B. Movchan, and A. Demchishin, "Investigation of the structure and properties of thick vacuum-deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide", Fiz. Met. Metalloved 28, (1969).
136. K. Robbie, "Sculptured thin films and glancing angle deposition: growth mechanics and applications", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, 1460-1465 (1997).
137. J. C. Dhar, A. Mondal, N. K. Singh, and K. K. Chattopadhyay, "Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays", Journal of Applied Physics 113, 174304 (2013).
138. Z. A. Lin, W. C. Lu, C. Y. Wu, and K. S. Chang, "Facile fabrication and tuning of TiO2 nanoarchitectured morphology using magnetron sputtering and its applications to photocatalysis", Ceramics International 40, 15523-15529 (2014).
139. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, and S. Jiazhong, "Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity", Solar Energy Materials and Solar Cells 90, 1773-1787 (2006).