簡易檢索 / 詳目顯示

研究生: 張淳弼
Chang, Chun-Pi
論文名稱: 親緣關係相近之物種氣味經由主嗅覺路徑回復因壓力所導致下降之神經新生
Odors from Phylogenetically Proximal Species Reverse Stress-decreased Neurogenesis in Mouse Dentate Gyrus via Main Olfactory Processing
指導教授: 游一龍
Yu, Lung
學位類別: 碩士
Master
系所名稱: 醫學院 - 行為醫學研究所
Institute of Behavioral Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 35
中文關鍵詞: 親緣關係神經新生嗅覺壓力同種生物
外文關鍵詞: phyogenetics, neurogenesis, olfaction, stress, conspecifics
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多研究發現壓力會導致成年個體之海馬齒狀迴的神經新生數量下降。社會支持已經被證實對壓力有調節的作用,像是實驗室之前的研究發現同種生物的陪伴或是染有同伴氣味的木塊去相陪都能夠有效地回復海馬齒狀迴因壓力所導致的神經新生數量下降之情形,這顯示了同伴的氣味在這樣的調節效果中扮演了重要的角色。在這個研究中我們想要去探討兩個主要的假設。第一點,在同種生物氣味對因壓力而導致神經新生下降之保護作用中是否需要無損之主嗅覺上皮細胞和犁鼻器主導的嗅覺傳導路徑的參與。第二點,不同品種的生物是否也具有像同種生物所具有的對因壓力所導致的神經新生數量下降相似的調節效果。為了驗證第一項假設,老鼠經歷了硫酸鋅鼻腔灌流或是犁鼻器的毀除手術或是兩者皆處理。而在驗證第二項假設的實驗中,我們挑選了五種在親緣關係上跟老鼠不同遠近的動物,大老鼠、倉鼠、天竺鼠、兔子,以及同時作為獵食者關係的狐狸來進行實驗。木塊會浸泡在這些動物使用過的墊料中用夾鍊袋封起來放置60小時。為了強化壓力的效果我們連續使用了隨機時距的電擊和水牢兩種壓力。在壓力給予之前會先在老鼠的腹腔注射一劑Bromodeoxyuridine (BrdU, 100mg/kg),以標定新生的細胞。老鼠在單獨或是有染著其他種動物氣味的木塊陪伴下連續接受兩種壓力,並且在壓力給完之後放到新的籠子中,並在六個小時之後進行灌流,以便取腦來計算齒狀迴中BrdU和BrdU/DCx所標定的細胞數量。我們的研究發現利用犁鼻器毀除使副嗅覺傳導路徑受損以及用硫酸鋅灌流來破壞主嗅覺傳導路徑並不會影響老鼠在齒狀迴的細胞增生或神經新生。同時,犁鼻器毀除也不會影響同種生物氣味對於因壓力而導致下降的神經新生的保護效果,但硫酸鋅灌流卻會破壞這樣的保護效果。另外,在受壓力時有大老鼠、倉鼠和天竺鼠的氣味陪伴會使得因壓力而導致下降的細胞增生和神經新生回復,而這些氣味本身並不會影響細胞增生或神經新生。兔子氣味的陪伴並不會影響細胞增生或神經新生以及因壓力而導致下降的細胞增生和神經新生。狐狸尿味道的陪伴並不會影響因壓力而導致下降的細胞增生和神經新生,但卻使得細胞增生和神經新生降低。總結以上,我們的研究發現了嗅覺傳導路徑中經由活化主要嗅覺上皮細胞的神經在同伴氣味所產生的對於因壓力而導致下降的細胞增生或神經新生的保護效果中扮演了重要的角色。在會產生氣味的動物品種和老鼠之間親緣關係的遠近導致這些氣味能經由陪伴產生對因壓力而導致下降的細胞增生或神經新生的保護效果。

    Many studies have indicated that stress decreases the proliferation of progenitor cells in the dentate gyrus of the hippocampus. Social support, in this regard, has been demonstrated to modulate stress-decreased cell proliferation. For example, our previous study revealed that conspecific’s company or wooden blocks with conspecific odor effectively reversed the stress-decreased neurogenesis in dentate gyrus of hippocampus. Odors derived from conspecifics’ companion play an important role in modulating such an effect. Two hypotheses were examined in this study. First, whether intact main olfactory epithelium (MOE)- and the vomeronasal organ (VNO)-mediated olfactory processing were required for the conspecific odor-exerted protective effect against the stress-decreased neurogenesis. Second, we studied the protective effect of different species’ odors on this stress-decreased neurogenesis. To examine our first hypothesis, some mice were experienced either Zinc Sulfate lavage or Vomeronasal organ removal (VNX) or both. Some mice were underwent sham surgery as control. For investigating our second hypothesis, five species with different phylogenic relationship to mouse pedigree were chosen. Wooden blocks impregnated with conspecific or above-mentioned species’ bedding materials were obtained. In an attempt to maximize the stress effect, shock and restraint stress were combined in a sequence. Bromodeoxyuridine (BrdU, 100mg/kg, one i.p. injection prior to stress treatment) was used to label mitotic cells. Mice experienced combined stress, or along with three wooden blocks impregnated with species-specific odor. Mice were then perfused at six hours after the conclusion of the stress protocol for quantifying the BrdU and BrdU/Dcx positive cells in the dentate gyrus. Our results revealed that the conspecific odor-produced protective effect remained to be intact in mice undergoing VNX. In contrast, the conspecific odor-produced protective effect no longer existed in mice whose MOE was impaired by ZnSO4 lavage. Likewise, the conspecific odor-produced protective effect was not noticed in mice treated with both ZnSO4 lavage and VNX. Moreover, we observed that presence of odors from rats, hamsters, and guinea pigs throughout the stress procedure reversed the stress-decreased cell proliferation and neurogenesis in mouse dentate gyrus, while these odors did not affect mouse dentate cell proliferation or neurogenesis. Presence of rabbits’ odors did not affect mouse dentate cell proliferation, neurogenesis, or the stress-decreased cell proliferation and neurogenesis. Although presence of fox urine odors decreased mouse dentate cell proliferation or neurogenesis, presence of this odor did not affect the stress-decreased cell proliferation or neurogenesis. Taken together, we conclude that olfactory processing via activation of nerons in MOE is responsible for the conspecific odor-produced protective effect against the stress-decreased cell proliferation and neurogenesis. Phylogenetic distances of the odor-generating species and mice contribute to the companions-exerted protective effects against stress-decreased cell proliferation and neurogenesis in mouse dentate gyrus.

    Table of contents Abstract(Chinese) 1-2 Abstract(English) 3-4 Introduction & hypothesis 9-12 Materials & methods ◎Animals 12 ◎Surgery and treatment procedure 12-13 ◎Exploration test 13-14 ◎Stress protocols 14 ◎Experimental design and grouping 15 ◎Experimental protocols 15-16 ◎Statistics 16-17 Results 17-18 Discussion 19-20 Reference 21-27 Figures ◎Figure 1 28 ◎Figure 2 29 ◎Figure 3 30 ◎Figure 4 31 ◎Figure 5 32 ◎Figure 6 33 ◎Figure 7 34 ◎Figure 8 35

    1. Antonovsky A: Conceptual and methodological problems in the study of resistance resources and stressful life events. Edited by BS Dohrenwend,
    BP Dohrenwend. In Stressful Life Events: Their nature and effects. New York, Wiley and Sons

    2. Cameron H. A. and McKay R. D. (1999). Restoring production of hippocampal neurons in old age. Nat Neurosci. 2(10):894-7.

    3. Caplan G. (1974) Support Systems and Community Mental Health. Behavioural Publications, New York.

    4. Cassel J. (1976). The contribution of the social environment to host resisiance. American Joumal of Epidemiology 104,107-123.

    5. Cherng C. G., Lin P. S., Chuang J. Y., Chang W. T., Lee Y. S., Kao G. S., Lai Y. T., Yu L. (2009). Presence of conspecifics and their odor-impregnated objects reverse stress-decreased neurogenesis in mouse dentate gyrus. J Neurochem. 2010 Mar 112(5):1138-46.

    6. Cobb S. (1976) Social support as a moderator of life stress. Psychosomatic Medicine 38, 300-314.

    7. Czeh B., Welt T., Fischer A. K., Erhardt A., Schmitt W., Muller M. B., Toschi N., Fuchs E., Keck M. E. (2002). Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry 52:1057–1065.

    8. Drapeau E., Mayo W., Aurousseau C., Le Moal M., Piazza P. V., Abrous D. N. (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA 100: 14385–14390.

    9. Fuchs E., Flugge G.. (1998). Stress, glucocorticoids and structural plasticity of the hippocampus. Neurosci Biobehav Rev 23:295–300.

    10. Feng, R., et al. (2001). Deficient neurogenesis in forebrain-specific Presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32: 911-926.

    11. Gould E., Tanapat P., McEwen B. S., Flugge G., Fuchs E. (1998). Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171.

    12. Graham K. L. (2011). Coevolutionary relationship between striatum size and social play in nonhuman primates. Am J Primatol. 73:314–322

    13. Holmes M. M. and Galea L. A. (2002). Defensive behavior and hippocampal cell proliferation: differential modulation by naltrexone during stress. Behav Neurosci 116: 160–168
    14. McGregor I. S. and Hargreaves G. A. (2004). Apfelbach R. and Hunt G.E., Neural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam, J. Neurosci. 24, pp. 4134–4144.

    15. Jacobs B. L., van Praag H., Gage F. H. (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5:262–269.

    16. Jacobs B. L., van Praag H., Gage F. H. (2000). Depression and the birth and death of brain cells. Am Sci 88:340–345.

    17. Kee N., Teixeira C. M., Wang A. H. and Frankland P. W. (2007). Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 10, 355–362.

    18. Kiyokawa Y., Takeuchi Y., Nishihara M., Mori Y. (2007). Main olfactory system mediates social buffering of conditioned fear responses in male rats. Eur J Neurosci 29:777-785.

    19. Kobayakawa K., Kobayakawa R., Matsumoto H., Oka Y., Imai T., et al. (2007). Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–8

    20. Laplagne D. A., Kamienkowski J. E., Esposito M. S., Piatti V. C., Zhao C., Gage F. H. and Schinder A. F. (2007). Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. Eur. J. Neurosci. 25, 2973–2981

    21. Malberg J. E. and Duman R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment, Neuropsychopharmacology 28, pp. 1562–1571.

    22. Masini C. V., Sauer S., Campeau S. (2005). Ferret odor as a processive stress model in rats: neurochemical, behavioral, and endocrine evidence. Behav Neurosci 119:280–292

    23. Masini C. V., Garcia R. J., Sasse S. K., Nyhuis T. J., Day H. E., Campeau S. (2010). Accessory and main olfactory systems influences on predator odor-induced behavioral and endocrine stress responses in rats. Behav Brain Res 207:70–77

    24. Matsunami H. and Buck L. B. (1997). A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784.

    25. Meredith M. (1991). Vomeronasal damage, not nasopalatine duct damage, produces mating behaviour deficits inmale hamsters, Chem. Senses 16; 155-167.

    26. Mirescu C. and Gould E. (2006) Stress and adult neurogenesis. Hippocampus 16, 233–238.

    27. Pham K., Nacher J., Hof P. R., McEwen B. S. (2003). Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 17:879–886.

    28. Pollard K. A., Blumstein D. T. (2011). Social group size predicts the evolution of individuality. Curr Biol 21:1-5.

    29. Ramirez-Amaya V., Marrone D. F., Gage F. H., Worley P. F. and Barnes C. A. (2006). Integration of new neurons into functional neural networks. J. Neurosci. 26, 12237–12241.

    30. Restrepo D., Arellano J., Oliva A. M., Schaefer M. L. & Lin W. (2004). Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm. Behav. 46, 247–256

    31. Rodriguez I., Del Punta K., Rothman A., Ishii T., Mombaerts P. (2002). Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat. Neurosci. 5, 134–140.

    32. Rodriguez I. (2003). Nosing into pheromone detectors. Nature Neurosci 6: 438–440

    33. Shumaker S. A. and Bronwell A. (1984). Toward a theory of social support: Closing conceptual gaps. Journal of Social Issues 40(4), 11–23.

    34. Sipos M. L., Wysocki C. J., Nyby J. G., Wysocki L., Nemura T. A. (1995). An ephemeral pheromone of female house mice: perception via the main and accessory olfactory systems. Physiol Behav 58:529-534

    35. Slotnick B., Restrepo D., Schellinck H., Archbold G., Price S., and Lin W. (2010). Accessory olfactory bulb function is modulated by input from the main olfactory epithelium. Eur. J. Neurosci. 31, 1108–1116.

    36. Spehr M., Kelliher K. R., Li X. H., Boehm T., Leinders-Zufall T., Zufall F. (2006). Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26, 1961–1970.

    37. Spehr M., Spehr J., Ukhanov K., Kelliher K. R., Leinders-Zufall T., Zufall F. (2006). Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63: 1476–1484

    38. Strine T. W., Kroenke K., Dhingra S., Balluz L. S., Gonzalez O., Berry J. T. and Mokdad A. H. (2009). The associations between depression, health-related quality of life, social support, life satisfaction, and disability in community-dwelling US adults. J. Nerv. Ment. Dis. 197, 61–64.

    39. Tanapat P., Hastings N. B., Rydel T. A., Galea L. A. and Gould E. (2001). Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J. Comp. Neurol. 437, 496–504.

    40. Thomas R. M., Hotsenpiller G., Peterson D. A. (2007). Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation. J Neurosci 27(11):2734-43.

    41. Trinh K., Storm D. R., (2003). Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci. 6, 519–525.

    42. Winocur G., Wojtowicz J.M., Sekeres M., Snyder J.S. and Wang S., (2006). Inhibition of neurogenesis interferes with hippocampus-dependent memory function, Hippocampus 16, pp. 296–304.

    43. Xu F., Schaefer M., Kida I., Schafer J., Liu N., Rothman D. L., Hyder F., Restrepo D., and Shepherd G. M. (2005). Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J. Comp. Neurol. 489, 491–500.

    44. Zhang X. M., Firestein S., (2002). The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5, 124–133.

    無法下載圖示 校內:2016-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE