簡易檢索 / 詳目顯示

研究生: 張宏銘
Chang, Hung-Ming
論文名稱: 以磁場操控半導體表面電漿發射特性模擬研究
Investigation of Surface Magnetoplasmon Emission
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 磁化表面電漿聚焦點相位匹配雷達
外文關鍵詞: surface magentoplasmon, convergent beam, phase matching, radar
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究論文中,我們在半導體材料InSb上外加磁場,控制其於SIS (semiconductor-insulator-Semiconductor)結構中磁化表面電漿的特性。當外加磁場時,半導體內部的電子會因磁場的方向而進行迴旋運動(Cyclotron motion),使表面電漿在SIS結構中產生非對稱的特性,故藉由外加不同方向、大小的磁場改變半導體材料的介電系數進而調控其表面電漿的波長、行進方向以及侷限表面電漿於上表面或是下表面。
    由於上述磁場調控半導體的性質,我們設計一個位於THz波段的磁控聚焦點透鏡。此透鏡可以在不改變其結構與材料的情況下,藉由改變外加磁場的方向調控其表面電漿侷限的表面已達到調控聚焦點位置的效果。以及利用週期性光柵和調整外加磁場的大小來控制輻射角度,可應用於THz波段的雷達,並且能在只調控磁場的大小即可於空間中進行152o大範圍的掃瞄。
    此論文我們將利用有限元素分析軟體COMSOL進行模組設計以及模擬解析,並藉由MATLAB進行理論計算證明其設計的正確性。

    In this study, we design three kinds of grating on the semiconductor-insulator-semiconductor (SIS) substrate. One is a magnetic lens with chirped gratings on the substrate for surface magnetoplasmons to generate a convergent beam in terahertz region based on the phase matching condition and can be well manipulated by the external magnetic field. Another is a magnetic-manipulated radar for 1THz in SIS substrate with periodic gratings. We can manipulated the scanned area of the radar up to 152o by applied different intensity of external magnetic field. The other is a multi-frequency magnetic lens with periodic gratings on the SIS substrate to generate a convergent beam with 1THz, 2THz, and 3THz lights, we can switch on and off by manipulated the external magnetic field.

    口試合格證明 I 中文摘要 II 英文摘要 III 致謝 IX 目錄 X 圖目錄 XII 第一章 緒論 1 1.1 兆赫波(Terahertz Radiation)簡介 1 1.2 磁化表面電漿(Magnetoplasmons) 3 1.3 近場繞射之相位調控與光程差公式 4 1.4 研究動機 7 第二章 表面電漿及磁化表面電漿 8 2.1 金屬Drude model模型 9 2.2 表面電漿(Surface plasma)的特性 13 2.3 表面電漿激發方法 17 2.4 磁化表面電漿(Surface Magnetoplasmons) 20 第三章 有限元素分析法(FEM) 27 3.1 有限元素分析的基本概念 27 3.2 微分方程的弱形式(Weak formulation) 28 3.3 有限元素分析-離散化 30 3.4 有限元素方程式的求解 33 3.5 有限元素分析軟體-COMSOL 34 第四章 磁化表面電漿發射研究 36 4.1 設計理論-磁化表面電漿色散曲線 36 4.2 Single-frequency convergent beam 40 4.3 Single-frequency radar 46 4.4 Multi-frequency convergent beam 59 第五章 結論 64 參考文獻 65

    [1] Yung-Chiang Lan et al., “Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration,” Opt Express. 18, 12470-12481 (2010).
    [2] Bin Hu et al., “Active Focal Length Control of Terahertz Slitted Plane Lenses by Magnetoplasmons,” Plasmonics 7, 191-199, 2011.
    [3] Y Gao et al., ’’A side-illuminated plasmonic planar lens’’, Opt Express 22, 699-706, 2014.
    [4] B. H. Cheng, Y. Z. Ho, Y. C. Lan,D. P. Tsai, ”Optical Hybrid-Superlens Hyperlens for Superresolution Imaging”, IEEE J. Sel. Top. Quantum Electron, Vol. 19, Issue. 3, 2013.
    [5] Irina Zubritskaya, “Active Magnetoplasmonic Ruler”, Nano Lett. 2015, 15, 3204−3211.
    [6] M. Moskovits, “Surface-enhanced spectroscopy”, Rev. Mod. Phys. 57, 783, 1985.
    [7]鐘佩鋼, 顏順通, “兆赫波之發展與原理簡介”, 物理雙月刊, 31卷, 2期, pp.109-116, 2009.
    [8]李青翰, 林凡異, “兆赫波漫談”, 物理雙月刊, 31卷, 2期, pp.97-108, 2009.
    [9] Frank L. Redrotti, S.J., Leno M. Pedrotti, Leno S. Pedrotti, “Introduction to OPTICS”, pp.267-289, pp.308-330.
    [10] M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures”, Surface Science Reports, Vol. 41, Issues 1-8, pp. 1-416, 2001.
    [11] 謝錦龍, “電漿與極光”, 國家奈米元件實驗室奈米通訊, 20卷, 4期, pp.36-37, 2013.
    [12] 邱國斌, 蔡定平, “左手材料奈米平板的表面電漿量子簡介”, 物理雙月刊, 25卷, 3期, pp. 373-383, 2003.
    [13] David K. Cheng, 李永勳, 顏仁鴻, “電磁波”, 初版, 曉園出版社, pp.111-114, pp.367-372,1988.
    [14] 吳民耀, 劉威志, “表面電漿子理論與模擬”, 物理雙月刊, 28卷, 2期, pp. 486-496, 2006.
    [15] Stefan A. Maier, “Plasmonics: Fundamentals and Applications”, Springer US, pp.25-26, pp.39-50, 2007.
    [16] G. I. Stegeman, R. F. Wallis, A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling”, Optics letters, Vol.8, No.7, July, 1983.
    [17] M. S. Kushwaha, P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration”, Physical Review B, Vol. 36, No. 11, pp. 5960-5967, 1987.
    [18]杜平安, 甘娥忠, 于亞婷, “有限元法-原理、建模及應用”, 第一版, 國防工業出版社, pp.1-6.
    [19]王剛, 安琳, “COMSOL Multiphysics工程實踐與理論仿真-多物理場數值分析技術”, 電子工程出版社, 北京, pp. 36-46, 2012.
    [20] M. S. Kushwaha, P. Halevi, “Magnetoplasmons in thin films in the Faraday configuration”, Physical Review B, Vol. 36, No. 11, pp. 3879-3889, 1987.
    [21] J. J. Brion, R. F. Wallis, A. Hartstein, E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors”, Phys. Rev. Lett. 28, pp.1455-1458, 1972.
    [22] Hsiang-Hao Wu, Yung-Chiang Lan, “Magnetic lenses of surface magnetoplasmons in semiconductor–glass waveguide arrays”, Applied Physics Express, Vol. 7, No. 3, 2014.
    [23] Bo Han Cheng, Hong Wen Chen, Kai Jiun Chang, Yung-Chiang Lan, Din Ping Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution”, Scientific Reports, vol. 5, 2015.
    [24] A. N. Vakilov, M. V. Mamonova, V. V. Prudnikov, “Adhesion of metals and semiconductors analyzed by a dielectric formalism”, Physics of the Solid State, Vol. 39, No. 6, pp.864-867, 1997.
    [25] R. Sporken, P. Xhonneux, R. Caudano, “THE FORMATION OF THE Al-lnSb(110) INTERFACE”, Surface Science, Vol. 193, Issues 1-2, pp.47-56, 1988.

    無法下載圖示 校內:2020-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE