簡易檢索 / 詳目顯示

研究生: 王冠筑
Wang, Kuan-Chu
論文名稱: 核黃素轉運蛋白在乳癌中所扮演的角色
The role of riboflavin transporter in breast cancer
指導教授: 賴明德
Lai, Ming-Derg
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 76
中文關鍵詞: 核黃素GPR172A生物資訊乳癌
外文關鍵詞: riboflavin, GPR172A, bioinformatics, breast cancer
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌細胞的生長速度遠大於正常細胞,當癌細胞生長到相當體積時,腫瘤組織內處於嚴重高度缺氧、酸性環境且充滿大量活性氧物質(ROS)等逆境壓力。在這些逆境下,癌細胞啟動一連串改變腫瘤微環境內外部的反應措施,維持一定含量的ROS,增加癌細胞的活性與增加其相關發炎因子的利用,並促進癌細胞的增殖。因此其中一種抗癌方法便是去除ROS,而過去的研究指出許多維生素(Vitamin)被認為具有抗發炎作用並消除ROS的功能,也表明維生素可能對癌症治療是很重要,因此在本篇研究中我們想針對與維生素相關的基因去進行癌症治療的研究。
    在本篇研究中我們所找尋到的一個標靶目標為核黃素轉運蛋白:GPR172A。它是一個結合G 蛋白質之穿膜蛋白,其主要功能在負責將核黃素從細胞外傳送的細胞內作用。過去的研究中提到GPR172A 與癌症似乎有些許關聯性,其被發現在胃癌及卵巢癌病人檢體中表現量有比較高的情況,被認為可能可作為癌症標記。但GPR172A 與乳癌的關係性過去並未有太多的研究,所以我們在本篇研究想要了解他們之間的關聯。
    我們使用生物資訊分析在三種不同的乳癌數據庫中搜索過量表達基因。為了分析GPR172A表達與乳癌患者存活的關聯,構建了Kaplan-Meier存活曲線。我們發現在存活率的分析中, GPR172A 高表現量的情況伴隨著一個比較不好的預後,這裡可能暗示著他在乳癌中可能扮演的一個oncogenic 的角色。為了研究GPR172A在乳癌中的影響,我們利用shRNA的技術去抑制其在細胞中的表現量並進行細胞功能性分析。實驗結果中發現抑制GPR172A的表現量會使得乳癌細胞的增殖和遷移能力下降,而且調節細胞週期相關蛋白的表現量也同時有被抑制的情況發生。結果顯示GPR172A可能在細胞增殖,遷移和細胞週期進程中發揮重要作用。為了鑑定共表達基因,我們使用用於癌症基因體學數據庫的cBioPortal。共表達數據顯示了與細胞週期進展的關聯並提供了對潛在機制的理解。我們推測GPR172A在乳癌治療中可能是潛在的標靶基因。

    Cancer cells grow much faster than normal cells, when cancers cells grow to a considerable volume, the tumors are highly hypoxic, acidic and filled with a large amount of reactive oxygen species (ROS). Under such circumstances, cancer cells initiate a series of reaction measures, maintain a certain amount of reactive oxygen species, cause the increase activity of cancer cells and the utilization of related inflammatory factors, and promote the proliferation of cancer cells. One of the anti-cancer methods is to remove ROS. In the previous studies, many vitamins were thought to have anti-inflammatory effects and can eliminate ROS. It also suggests that vitamins may be important for cancer treatment, so in this study we want to conduct cancer treatment research on vitamin-related genes.
    We proposed target therapy for the treatment of breast cancer. GPR172A is a G protein-coupled receptor (GPCR) and a transmembrane protein that mediates cellular uptake of riboflavin (vitamin B2). In previous study, GPR172A has been a potential biomarker in ovarian and gastric cancer. Furthermore, the up-regulated of GPR172A in human malignancies. However, the effect of GPR172A in breast cancer is not clear. Therefore, the aim of this study is to identify the function of GPR172A in breast cancer.
    To find out the role of GPR172A in breast cancer, we used bioinformatics analysis searching the overexpression gene in three different databases of breast carcinoma. To analyze the association of GPR172A expression with breast cancer patient survival, Kaplan-Meier survival curves were constructed. A significant association was identified between GPR172A mRNA and survival. GPR172A predicts a poor survival in breast carcinoma. We examined the effects of GPR172A on breast cancer and using vector-mediated short hairpin RNA (shRNA) to suppress GPR172A expression. GPR172A shRNA suppressed the cell proliferation and migration of breast cancer cells in vitro. The cell cycle-related protein expression was also altered by GPR172A shRNA. In order to identify the coexpression genes, we used the cBioPortal for Cancer Genomics database. The co-expression data revealed the association with cell cycle progression and provided insight into the potential underlying mechanism. The results suggested that GPR172A may play an important role in cell proliferation, migration and cell cycle progression. GPR172A is a potential target gene for breast cancer treatment.

    Table of Contents 中文摘要 I Abstract III Table list VII Figure list VIII Introduction 1 1. The relation between reactive oxygen species and cancer. 1 2. Vitamin and cancer risk. 1 3. The relation between vitamin B group and cancer. 2 4. The relation between riboflavin transporter with disease and cancer. 3 5. Specific aim and strategy. 5 Materials and Methods 6 1. Cell culture 6 2. Plasmid preparation 9 3. Lentiviral vector production 11 4. Lentiviral transfection 12 5. Reverse transcription polymerase chain reaction (RT-PCR) 13 6. Quantitative Real-Time PCR 14 7. Western blot 15 8. MTT Assay 20 9. Colony formation assay 21 10. Cell cycle assay 21 11. Boyden chamber assay 22 12. Bioinformatic analysis 23 Results 26 The expression of GPR172A in breast cancer. 26 The high expression of GPR172A in breast cancer was correlated with poor prognosis. 27 Knockdown of GPR172A inhibited cell growth rate. 27 Knockdown of GPR172A inhibited cell migration. 28 Knockdown of GPR172A delayed cell cycle. 28 Knockdown of GPR172A influence cell cycle regulation protein. 29 Discussion 30 Conclusions 34 Reference 35 Table 46 Figure 50 Addendum 74

    1. M Ogrunc, R Di Micco, M Liontos, L Bombardelli, M Mione, M Fumagalli, V G Gorgoulis, andF d'Adda di Fagagna ,(2014). Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 21(6): 998–1012.
    2. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer. 2014 Nov;14(11):709-21. doi: 10.1038/nrc3803.
    3. Schumacker PT. Reactive oxygen species in cancer: a dance with the devil. Cancer Cell. 2015 Feb 9;27(2):156-7. doi: 10.1016/j.ccell.2015.01.007.
    4. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007 Sep;12(3):230-8
    5. V. Lobo, A. Patil, A. Phatak, and N. Chandra(2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 4(8): 118–126.
    6. Rao AL, Bharani M, Pallavi V. (2006). Role of antioxidants and free radicals in health and disease. Adv Pharmacol Toxicol. 7:29–38.
    7. Esra Birben, PhD, Umit Murat Sahiner, MD,Cansin Sackesen, MD, Serpil Erzurum, MD, and Omer Kalayci, MD (2012) World Allergy Organ J. 5(1): 9–19.
    8. Glatthaar BE, Hornig DH, Moser U.(1986) The role of ascorbic acid in carcinogenesis. Adv Exp Med Biol. 206:357-77.
    9. Jenab M, Riboli E, Ferrari P, Sabate J, Slimani N, Norat T, Friesen M, Tjønneland A, Olsen A, Overvad K, Boutron-Ruault MC, Clavel-Chapelon F, Touvier M, Boeing H, Schulz M, Linseisen J, Nagel G, Trichopoulou A, Naska A, Oikonomou E, Krogh V, Panico S, Masala G, Sacerdote C, Tumino R, Peeters PH, Numans ME, Bueno-de-Mesquita HB, Büchner FL, Lund E, Pera G, Sanchez CN, Sánchez MJ, Arriola L, Barricarte A, Quirós JR, Hallmans G, Stenling R, Berglund G, Bingham S, Khaw KT, Key T, Allen N, Carneiro F, Mahlke U, Del Giudice G, Palli D, Kaaks R, Gonzalez CA.(2006) Plasma and dietary vitamin C levels and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Carcinogenesis. 27(11):2250-7.
    10. J. S. Sebolt-Leopold, R. Herrera. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 4, 937–947; 2004.
    11. Yun J, Mullarky E, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350(6266):1391-6; 2015.
    12. Krajcovicová-Kudlácková M1, Pauková V, Baceková M, Dusinská M. Lipid peroxidation in relation to vitamin C and vitamin E levels. Cent Eur J Public Health. 2004 Mar;12(1):46-8.
    13. White E1, Shannon JS, Patterson RE.( 1997) Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiol Biomarkers Prev. 6(10):769-74.
    14. Roberd M. Bostick, John D. Potter, David R. McKenzie, Thomas A. Sellers, Lawrence H. Kushi, Kristi A. Steinmetz and Aaron R. Folsom (1993) Reduced risk of colon cancer with high intake of vitamin E: the Iowa Women's Health Study. Cancer Res. 15;53(18):4230-7.
    15. Moreno J, Krishnan AV, Feldman D. Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J Steroid Biochem Mol Biol. 2005 Oct;97(1-2):31-6. Epub 2005 Jul 15.
    16. Holt PR, Arber N, Halmos B, Forde K, Kissileff H, McGlynn KA, Moss SF, Kurihara N, Fan K, Yang K, Lipkin M. Colonic epithelial cell proliferation decreases with increasing levels of serum 25-hydroxy vitamin D. Cancer Epidemiol Biomarkers Prev. 2002 Jan;11(1):113-9.
    17. Song Yao, PhD1; Marilyn L. Kwan, PhD2; Isaac J. Ergas, MPH2; et al. Association of Serum Level of Vitamin D at Diagnosis With Breast Cancer SurvivalA Case-Cohort Analysis in the Pathways Study. JAMA Oncol. 2017;3(3):351-357. doi:10.1001/jamaoncol.2016.4188
    18. Jasmaine D. Williams Abhishek Aggarwal Srilatha Swami Aruna V. Krishnan Lijuan JiMegan A. Albertelli Brian J. Feldman. Tumor Autonomous Effects of Vitamin D Deficiency Promote Breast Cancer Metastasis. Endocrinology, Volume 157, Issue 4, 1 April 2016, Pages 1341–1347,
    19. R A Hubner and R S Houlston2. .Folate and colorectal cancer prevention. Br J Cancer. 2009 Jan 27; 100(2): 233–239.
    20. Kim YI1. Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies.Environ Mol Mutagen. 2004;44(1):10-25.
    21. Kim YI1. Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res. 2007 Mar;51(3):267-92.
    22. Jacobson EL. Niacin deficiency and cancer in women. J Am Coll Nutr. 1993 Aug;12(4):412-6.
    23. Siassi F, Ghadirian P. Riboflavin deficiency and esophageal cancer: a case control-household study in the Caspian Littoral of Iran. Cancer Detect Prev. 2005;29(5):464-9. Epub 2005 Sep 23.
    24. Ross NS, Klein MR. Riboflavin deficiency in cultured rat hepatoma cells: a model for studying the hepatic effects of riboflavin deficiency. In Vitro Cell Dev Biol. 1990 Mar;26(3 Pt 1):280-4.
    25. Joyce Y. Huang, Lesley M. Butler, Renwei Wang, Aizhen Jin, Woon-Puay Koh, and Jian-Min Yuan Dietary intake of one-carbon metabolism-related nutrients and pancreatic cancer risk: The Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 Feb 1.
    26. Shaidah Deghan Manshadi,Lisa Ishiguro,Kyoung-Jin Sohn,Alan Medline,Richard Renlund,Ruth Croxford, Folic Acid Supplementation Promotes Mammary Tumor Progression in a Rat Model. PLoS One. 2014; 9(1): e84635.
    27. Liu Y, Zhou LS, Xu XM, Deng LQ, Xiao QK. Association of dietary intake of folate, vitamin B6 and B12 and MTHFR genotype with breast cancer risk. Asian Pac J Cancer Prev. 2013;14(9):5189-92.
    28. Hansen MF, Jensen SØ, Füchtbauer EM1, Martensen PM. High folic acid diet enhances tumour growth in PyMT-induced breast cancer. Br J Cancer. 2017 Mar 14;116(6):752-761. doi: 10.1038/bjc.2017.11. Epub 2017 Feb 2.
    29. Theodore M. Brasky, Emily White, and Chi-Ling Chen .Long-Term, Supplemental, One-Carbon Metabolism–Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. Journal of Clinical Oncology 35(30):JCO.2017.72.773 · August 2017 
    30. Marta Ebbing, MD; Kaare Harald Bønaa, MD, PhD; Ottar Nygård, MD, PhD; et al. Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12. JAMA. 2009;302(19):2119-2126. doi:10.1001/jama.2009.1622
    31. Yang HT, Chao PC, Yin MC. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration. J Food Sci. 2013 Feb;78(2):H343-9. doi: 10.1111/1750-3841.12012. Epub 2013 Jan 11.
    32. Hilary J Powers. Riboflavin (vitamin B-2) and health. The American Journal of Clinical Nutrition, Volume 77, Issue 6, 1 June 2003, Pages 1352–1360
    33. McCormick DB. The fate of riboflavin in the mammal. Nutr Rev 1972;30:75–9
    34. Yonezawa A, Inui K.. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med. 2013 Apr-Jun;34(2-3):693-701. doi: 10.1016/j.mam.2012.07.014.
    35. G. Ho, A. Yonezawa, S. Masuda, K. Inui, K.G. Sim, K.Carpenter, R.K. Olsen, J.J. Mitchell, W.J. Rhead, G.Peters, J. Christodoulou. Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene GPR172B. Hum. Mutat., 32 (1) (2011), pp. E1976-1984.
    36. KAROLINE C. MANTHEY, YAP C. CHEW, and JANOS ZEMPLENI.,Riboflavin Deficiency Impairs Oxidative Folding and Secretion of Apolipoprotein B-100 in HepG2 Cells, Triggering Stress Response Systems.J Nutr. Author manuscript; available in PMC 2006 May 1.
    37. Cheng L ,Zhang Q , Yang S , Yang Y , Zhang W , Gao H , Deng X , Zhang Q. A 4-gene panel as a marker at chromosome 8q in Asian gastric cancer patients. Genomics [28 May 2013, 102(4):323-330]
    38. Vathipadiekal V, Wang V, Wei W, Waldron L, Drapkin R, Gillette M, Skates S, Birrer M. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array. Clin Cancer Res. 2015 Nov 1;21(21):4960-9. doi: 10.1158/1078-0432.CCR-14-3173. Epub 2015 May 5.
    39. Fu T, Liu Y, Wang Q, Sun Z, Di H, Fan W, Liu M, Wang J. Overexpression of riboflavin transporter 2 contributes toward progression and invasion of glioma. Neuroreport. 2016 Oct 19;27(15):1167-73. doi: 10.1097/WNR.0000000000000674.
    40. Jiang XR, Yu XY, Fan JH, Guo L, Zhu C, Jiang W, Lu SH. RFT2 is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenesis by sustaining cell proliferation and protecting against cell death. Cancer Lett. 2014 Oct 10;353(1):78-86. doi: 10.1016/j.canlet.2014.07.013. Epub 2014 Jul 18.
    41. Matnuri M, Zheng C, Sidik D, Bai G, Abdukerim M, Abdukadier A, Ahmat K, Ma Y, Eli M. Correlation analysis of riboflavin, RFT2 and Helicobater pylori in gastric carcinoma. Int J Clin Exp Pathol. 2015 Oct 1;8(10):13339-45. eCollection 2015.
    42. John PC, Mews M, Moore R. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma. 2001;216(3-4):119-42.
    43. King RW, Deshaies RJ, Peters JM, Kirschner MW.Science..How proteolysis drives the cell cycle.1996 Dec 6; 274(5293):1652-9.
    44. Cartee L, Wang Z, Decker RH, Chellappan SP, Fusaro G, Hirsch KG, Sankala HM, Dent P, Grant S. The cyclin-dependent kinase inhibitor (CDKI) flavopiridol disrupts phorbol 12-myristate 13-acetate-induced differentiation and CDKI expression while enhancing apoptosis in human myeloid leukemia cells. Cancer Res. 2001 Mar 15;61(6):2583-91.
    45. S.J. Cook, K. Balmanno, A. Garner, T. Millar, C. Taverner, D. Todd. Regulation of cell cycle re-entry by growth, survival and stress signalling pathways.Biochemical Society Transactions Feb 2000, 28 (2) 233-240; DOI: 10.1042/bst0280233
    46. Wojciech Strzalka and Alicja Ziemienowicz,* Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot. 2011 May; 107(7): 1127–1140.
    47. Li-Chiou Chuang1 and P. Renee Yew. Proliferating Cell Nuclear Antigen Recruits Cyclin-dependent Kinase Inhibitor Xic1 to DNA and Couples Its Proteolysis to DNA Polymerase Switching. J Biol Chem. 2005 Oct 21;280(42):35299-309. Epub 2005 Aug 23.
    48. Guangan He, Zahid H Siddik, Zaifeng Huang, Ruoning Wang, John Koomen, Ryuji Kobayashi, Abdul R Khokhar & Jian Kuang. Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene volume24, pages2929–2943 (21 April 2005)
    49. Kay F. Macleod, Nicole Sherry, Greg Hannon, David Beach, Takashi Tokino, Kenneth Kinzler, Bert Vogelstein, and Tyler Jacks. p53-Dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 1995 Apr 15;9(8):935-44.
    50. Liang J1, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med. 2002 Oct;8(10):1153-60. Epub 2002 Sep 16
    51. Li Y, Dowbenko D, Lasky LA.. AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem. 2002 Mar 29;277(13):11352-61. Epub 2001 Dec 27.
    52. George Z. Rassidakis, Marianna Feretzaki, Coralyn Atwell, Ioannis Grammatikakis, Quan Lin, Raymond Lai, Francois-Xavier Claret, L. Jeffrey Medeiros, and Hesham M. Amin. Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood. Author manuscript; available in PMC 2006 Feb 24.
    53. Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pac J Cancer Prev. 2016;17(S3):43-6.
    54. Xin Jin and Ping Mu .Targeting Breast Cancer Metastasis. Breast Cancer (Auckl). 2015; 9(Suppl 1): 23–34.. doi: 10.4137/BCBCR.S25460
    55. Cockburn JG, Hallett RM, Gillgrass AE, Dias KN, Whelan T, Levine MN, Hassell JA, Bane A .The effects of lymph node status on predicting outcome in ER+ /HER2- tamoxifen treated breast cancer patients using gene signatures. BMC Cancer. 2016 Jul 28;16:555. doi: 10.1186/s12885-016-2501-0.
    56. SehamuddinGaladari.AneesRahman.SirajPallichankandy.FaisalThayyullathil. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radical Biology and Medicine Volume 104, March 2017, Pages 144-164
    57. Panieri E1, Santoro MM…ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016 Jun 9;7(6):e2253. doi: 10.1038/cddis.2016.105.
    58. Pan JS, Hong MZ, Ren JL. .Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009 Apr 14;15(14):1702-7.
    59. Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M: Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer research. 2013, 73 (13): 4158-4168.
    60. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA.. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis.Nature. 2011 Jul 6;475(7354):106-9. doi: 10.1038/nature10189.
    61. Matthias A. Hediger, Benjamin Clémençon, Robert E. Burrier, and Elspeth A. Bruford .The ABCs of membrane transporters in health and disease (SLC series): Introduction. Mol Aspects Med. 2013 Apr; 34(2-3): 95–107 .doi: 10.1016/j.mam.2012.12.009
    62. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA..The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch. 2004 Feb;447(5):465-8. Epub 2003 Nov 18.
    63. Perland E, Fredriksson R. Classification Systems of Secondary Active Transporters. Trends Pharmacol Sci. 2017 Mar;38(3):305-315. doi: 10.1016/j.tips.2016.11.008. Epub 2016 Dec 9.
    64. Fletcher JI1, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010 Feb;10(2):147-56. doi: 10.1038/nrc2789. Epub 2010 Jan 15.
    65. Leonard GD1, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist. 2003;8(5):411-24.
    66. AdewaleFadaka. Basiru Ajiboye.Oluwafemi.Ojo Olusola.Adewale Israel.Olayide Rosemary.Emuowhochere. Biology of glucose metabolization in cancer cells. Journal of Oncological Sciences Volume 3, Issue 2, July 2017, Pages 45-51
    67. Balaraman Kalyanaraman. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 2017 Aug; 12: 833–842.. doi: 10.1016/j.redox.2017.04.018
    68. N. Gupta, S. Miyauchi, R.G. Martindale, et al.Upregulation of the amino acid transporter ATB0,+(SLC6A14) in colorectal cancer and metastasis in humans.Biochim Biophys Acta, 174 (2005), pp. 215-223
    69. S. Karunakaran, N.S. Umapathy, M. Thangaraju, et al.Interaction of tryptophan derivatives with SLC6A14 (ATB0,+) reveals the potential of the transporter as a drug target for cancer chemotherapy.Biochem J, 414 (2008), pp. 343-355
    70. V. Ganapathy, M. Thangaraju, P.D. Prasad, et al.SLC6A14 as a drug target for cancer therapy. 37th Congress of IUPS (Birmingham, UK).Proc 37th IUPS, SA305 (2013)
    71. P. Mellanen, H. Minn, R. Grénman, and P. Härkönen, “Expression of glucose transporters in head-and-neck tumors,” International Journal of Cancer, vol. 56, no. 5, pp. 622–629, 1994.
    72. C. Reisser, K. Eichhorn, C. Herold-Mende, A. I. Born, and P. Bannasch, “Expression of facilitative glucose transport proteins during development of squamous cell carcinomas of the head and neck,” International Journal of Cancer, vol. 80, no. 2, pp. 194–198, 1999.
    73. M. Kunkel, T. E. Reichert, P. Benz et al., “Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma,” Cancer, vol. 97, no. 4, pp. 1015–1024, 2003.
    74. Desmoulin SK, Hou Z, Gangjee A, Matherly LH. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol Ther. 2012 Dec;13(14):1355-73. doi: 10.4161/cbt.22020. Epub 2012 Sep 6.
    75. Matherly LH, Hou Z, Deng Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev. 2007 Mar;26(1):111-28.

    無法下載圖示 校內:2023-06-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE