簡易檢索 / 詳目顯示

研究生: 陳宣穆
Hsuan-Mu, Chen
論文名稱: 旋轉體薄殼之大變形分析
Large Deformation Analysis of Shell of Revolution
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 一階剪力變形理論非線性分析微分再生核法大變形離散質點
外文關鍵詞: first-order shear deformation theory, non-linear analysis, discrete particles, large deformation, DRKM (differential reproducing kernel method)
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文在微小彈性變形與考慮一階剪力變形之假設條件下,依據變形前後幾何形狀之變化導出旋轉殼體在大變位下之應變量,並依據變形後位置上之平衡條件建立了旋轉殼體大變位之非線性分析理論。在數值分析上採用牛頓迭代法將非線性方程組化為線性方程組求解,並利用微分再生核法(DRKM)進行聯立微分方程組之數值求解。
    利用上述方法本文進行了圓柱殼受均勻彎矩之大變形分析,並與解析結果比較,驗證理論與數值方法之正確性,並針對淺殼分析旋轉殼體之大變形、突跳…等非線性現象。結果顯示本文所建立之理論與分析方法的確能應用於旋轉殼體之幾何非線性行為分析。

    In this paper, under the assumptions of small elastic deformation and first-order shear deformation and considering the change of the geometry form before and after deformation, we obtained the strains of large deformation of shell. And according to balance of the shell after deformation, we can set up an non-linear theory to analyze large deformation of shell of revolution. To solve the non-linear system of equations, we adopt Newton-Raphson method and use the DRKM to obtain the numerical solutions of the equations.

    Using above mentioned methods, we proceed the large deformation analysis of cylinder shell that suffered uniform moment, compare with the analytical result, vertify the exactness of the theory and numerical method and analyze the large deformation and snaping throught of the thin shell of revolution. The result shows that the established theory and numerical method can be applied to the non-linear analysis of shell of revolution.

    第一章 緒論 1.1 研究目的 ………………………………………………… 1 1.2 無元素法的發展和文獻回顧 …………………………… 5 1.3 本文架構 ………………………………………………… 8 第二章 旋轉薄殼大變形的理論解法 2.1 薄殼中曲面特性的描述 ……………………………… 10 2.1.1 變形前構型 …………………………………… 11 2.1.2 變形後構型 …………………………………… 12 2.1.3 大變形後構型 ………………………………… 15 2.2 薄殼變形與應變 ……………………………………… 17 2.2.1 變形前構型 …………………………………… 17 2.2.2 變形後構型 …………………………………… 18 2.2.3 大變形後構型 ………………………………… 20 2.3 平衡方程式 …………………………………………… 21 2.3.1 小變形解析構架 ……………………………… 21 2.3.1 大變形解析構架 ……………………………… 25 2.4 旋轉薄殼大變形解析構架 …………………………… 26 2.5 邊界條件 ……………………………………………… 32 第三章 數值方法 3.1 微分再生核法(differential reproducing kernel method) ………………………………………………… 35 3.1.1 離散的微分核近似 ………………………… 35 3.1.2 再生核形狀函數的微分 …………………… 38 3.2 牛頓拉弗森法(Newton-Raphson method) …………… 41 3.2.1 一維方程式 ………………………………… 42 3.2.2 N維方程式 …………………………………… 43 3.2.3 N維方程組 …………………………………… 45 第四章 旋轉薄殼大變形之數值解法 4.1 增量式和矩陣式 ……………………………………… 48 4.1.1 增量式 ……………………………………… 48 4.1.2 矩陣式 ……………………………………… 52 4.2 程式求解流程 ………………………………………… 60 第五章 數值算例 5.1 數值精確度 ………………………………………………… 63 5.2 非線性分析 ………………………………………………… 65 5.3 突跳現象(snap through) ………………………………… 67 第六章 結論 參考文獻

    參考文獻

    [1] H. Kraus, “Thin elastic shells,” John Wiley & Sons, America, 1967

    [2] R. K. Kapania, “A review on the analysis of laminated shells,” Journal Pressure Vessel Technology, Vol. 111, pp. 88-96, 1989

    [3] J. N. Reddy, “On refined computational models of composite laminates,” International Journal for Numerical Methods in Engineering, Vol. 27, pp. 361-382, 1989

    [4] 楊桂通,「彈性力學」,高等教育出版社,中國,1997

    [5] I. S. Sokolinkoff, “Mathematical theory of elasticity,” Mc Graw-Hil, America, 1956

    [6] K.Mattiasson, A. Bengtsson and A. Samuelsson, “On refined accuracy and efficient of numerical algorithms for geometrically nolinear structural analysis,”In Proc. Finite Element Methods for nonlinear Problems, Europe-U. S. Symp., Trondheim, pp. 3-23, 1985

    [7] K. J. Bathe, E. Ramm and E. L. Wilson, “Finite element formulation for large deformation dynamic analysis, International Journal for Numerical Methods in Engineering, Vol. 9, pp. 353-386, 1975

    [8] R. D. Wood and O. C. Zienkiewicz, “Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells,” Computers and Structures, Vol. 7, pp. 725-735, 1977

    [9] Kuo-Mo Hsiao, Horng-Jann Horng and Yeh-Ren Then, “A co-rotational procedure that handles large rotations of spatial beam structures,” Computers and Structures, Vol. 27, pp. 769-781, 1987

    [10] L. B. Lucy, “Numerical approach to testing the fisson hypothesis,” Astrophysical Journal, Vol. 82, pp. 1013-1024, 1977

    [11] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars,” Monthly Notices of the Royal Astronomical Society,Vol. 181, pp. 375-389, 1977

    [12] T. Liszka and J. Orkist, “The finite difference method at arbitrary irregular grids and its applications in applied machanics,” Computers and Structures, Vol. 11, pp. 83-95, 1980

    [13] B. Nayroles, G. Touzot and P. Villon, “Generalizing the finite element method: diffuse approximation and diffuse elements,” Computational Mechanic, Vol. 10, pp. 307-318, 1992

    [14] T. Belytschko, Y. Y. Lu and L. Gu, “Element free Galerkin methods,” International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-256, 1994

    [15] P. Krysl and T. Belytschko, “Analysis of thin plates by the element-free Galerkin method,” Computational Mechanic, Vol. 17, pp. 26-35, 1995

    [16] S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computational modeling and simulation,” Computational Modeling Simulation Egineering, Vol. 3, pp. 187-196, 1998

    [17] S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Computational mechanics, Vol. 22, pp. 117-127, 1998

    [18] S. N. Atluri, J. Y. Cho and H. G. Kim, “Analysis of the beams, using the meshless local Petrov-Galerkin (MLPG) method, with generalized moving least squares interpolations,” Computational Mechanic, Vol. 24, pp. 334-347, 1999

    [19] Y. T. Gu and G. R. Liu, “A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analysis of thin plates,” Computer Modeling in Engineering & Sciences, Vol. 2, no. 4, pp. 463-476, 2001

    [20] H. Lin and S.N. Atluri, “The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations, “Computer Modeling in Engineering & Sciences, Vol. 2, no. 2, pp. 117-142, 2001

    [21] W. K. Liu, S. Jun and Y. F. Zhang, “Reproducing kernel particle method,” International Journal for Numerical Methods in Fluids, Vol.20, pp. 1081-1106, 1995

    [22] J. S. Chen, C. Pan, C. T. Wu and W. K. Liu, “Reproducing kernel particle method for large deformation analysis of nonlinear structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 195-227, 1996

    [23] Y. T. Gu and G. R. Liu, “A boundary point interpolation method for stress analysis of solids,” Computational mechanics, Vol. 28, pp. 47-54, 2002

    [24] N. Sukumar and J. E. Bolandar, “Numerical computation of discrete differential operators on non-uniform grids,” Computer Methods in Applied Mechanics and Engineering, Vol. 10, no. 10, pp. 1-15, 2003

    [25] K. M. Liew, T. Y. Ng and Y. C. Wu, “Meshfree method for large deformation analysis–a reproducing kernel particle approach,” Engineering Structures, vol. 24, pp. 543-551, 2002

    [26] 許世壁,「非線性聯立方程式數值方法」,中央圖書出版社,台灣,1988

    [27] 袁帝文,「應用數值方法」,儒林圖書公司,台灣,2002

    [28] W. Y. Yang, W. W. Cao, T. S. Chung and J. Morris ”Applied numerical methods using MATLAB,” John Wiley & Sons Inc. , America, 2005

    [29] 張智星,「Matlab 程式設計與應用」,清蔚科技,台灣,2000

    [30] D. G. Feritis, “Nonlinear mechanics,” CRC-Press, America, 2000

    [31] M. Jirasek and Z. P. Bazant, “Inelastic analysis of structures,” John Wiley & Sons Inc. , England, 2002

    [32] 梅向明和黃敬之,「微分幾何」,高等教育出版社,中國,1992

    [33] J. E. Gibson, “Thin shells- computing and theory,” Franklin Print House, England, 1980

    [34] 魏敬訓,「微分再生核近似法於樑的大變形問題分析之應用」,國立成功大學土木研究所碩士論文,台灣,2005

    下載圖示 校內:立即公開
    校外:2007-08-21公開
    QR CODE