| 研究生: |
鄭光宏 Cheng, Kuang-Hung |
|---|---|
| 論文名稱: |
臺灣與美國股票指數報酬之BI-GARCH模型與應用 Bi-GARCH Modeling of the Taiwan and US Stock Index Returns with Applications |
| 指導教授: |
黃銘欽
Huang, Min-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 連動性 、台灣加權股價指數 、美國道瓊工業指數 、GARCH模型 、幾何布朗運動 |
| 外文關鍵詞: | Dynamic Relationship, Taiwan Weighted Stock Index, Dow Jones Industrial Average Index, GARCH Model, Geometric Brownian Motion Model |
| 相關次數: | 點閱:189 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
各國股市之間存在著某種程度之連動性,國內不少人一早起床便是先去看昨天美國股市收盤情況,美國三大股市之ㄧ道瓊工業指數就為國人最熟悉。基於上述想法,本論文建構台灣加權股價指數(以下簡稱TWII)和美國道瓊工業指數(以下簡稱DJI)雙變量GARCH模型,並由模型中了解兩者相互關係。資料蒐集為2005年1月3日至2010年4月23日近五年TWII與DJI之日收盤價。這五年中,金融界發生了金融風暴。透過研究分析,卡方檢定了解到TWII並非為幾何布朗運動模式,並有別於傳統採用對數常態計算獲利機率,GARCH模擬求出到期日之指數落在獲利區之機率。DJI對TWII存在連動性,並且兩者波動性之持續均會維持一段較長時間,若有新資訊對於兩者市場所造成之衝擊,其衝擊消逝較慢。金融產品價格的波動程度也代表風險之大小,國內機構法人與一般投資者在交易時,不是只看報酬率大小,更要留意波動風險,並多方觀察各國間之連動性,俾使對於投資方面才能達到預期目標。
Dynamic relationship lies amongst stock markets in each country. In our country, quite a few people would get up early to watch US stock market closing status from last night. Amongst three largest stock markets in US, Dow Jones Industrial Average Index is most known by our people. As per above thought, this thesis is written based on constructing bivariate GARCH model of Taiwan Weighted Stock Index(abbreviated as TWII below) and Dow Jones Industrial Average Index(abbreviated as DJI below) and investigating relationships between both from this model. Information gathered for this research is based on closing indices of TWII and DJI in nearly five years from January 3rd 2005 to April 23rd 2010. In these five years, there had been financial crisies . Through research analysis, applying Chi-square test , it was discovered that TWII does not follow Geometric Brownian Motion Model and is also deviant from traditionally recognized lognormal model. GARCH simultation was used to calculate probability for due date index to fall within profit-making zone. Dynamic relationship lies betwen DJI to TWII. These two fluctuation relationship would continue for a longer time. If new information would cause impacts to both markets however these impacts would decease more slowly. Financial products' price fluctuation means risks. However investors should notice these fluctuation risks; as well as should observe dynamic relationship amongst each country from more perspectives in order that investment would achieve expected goals.
Black, F., 1976, “Studies of Stock Price Volatility Changes.”Proceeding American Statistical Association ,177-181.
Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroscedasticity. ” Journal of Econometrics ,31 ,307-327.
Bollerslev, T., R. F. Engle, and J. M. Wooldridge ,1988 , “A Capital Asset Pricing Model with Time–Varying Covariances.”Journal of Political Economy ,96 ,116-31.
Bollerslev, T., 1990, “Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model.”Review of Economics and Statistics , 72,498-505.
Bollerslev, T.,Chou, R.Y.,and Kroner, K . F., 1992 , “ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence .”J.Econometrics, 52,5-60.
Christie, A. A., 1982 , “The Stochastic Behavior of Common Stock Variance-value,Leverage and Interest Rate Effects.”Journal of Financial Economics , 10, 407-484.
Chen Y.S., S.T. Wang , 2004 ,“Estimation of Time-Varying Hedge Ratios for International bulk Shipping Market Using BGARCH and RCAR.” Journal of Risk Management , 6 , 33-56.
Darbar. S. M. and P. Deb ,1997 ,“Co-Movements in International Equity Markets. ”The Journal of Financial Research , 1 ,305-22 .
Engle, R. F and V. K. Ng ,1993,“Measuring and Testing the Impact of News on Volatility.”Journal of Fianace, 48, 1749-1778.
Engle, R. F., 1982,“Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.”Econometrica, 50,987-1007.
Engle, R. F. K. F. Kroner ,1995 , “Multivariate Simultaneous generalized ARCH.”Econometric Theory ,11,122-150.
Enders, W., 2004,“Appliedn Econometric Time Series.”New York :John Wesley & Sons ,Inc.
Horng W.J., 2008,“Associated Analysis of South-Korea and Japan Stock Market Returns Volatility:An Application of Bivariate Student’s t Distrution and GARCH Model.” Asian Journal of Management and Humanity Sciences, 3 ,46-58.
Kmenta, J., 1986,“Elements of Econometrics.” 2nd ed, New York :Macmillan Publishing Co.
Kroner, F. K. and S. Jahangir ,1993 , “Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures. ”Journal of Financial and Quantitative Analysis , 4 , 535-551.
Lee, J. H. H.,1991,“A Lagrange Multiplier Test for GARCH Model.”Economcs Letters, 37 ,265-271.
Lin, W-L., 1989 , “The Sources of Intra Daily Volatility in the Foreign Exchange Market: A Multivariate Factor GARCH Approach.” Unpublished manuscript, University of Wisconsin.
Levin, A., C. F. Lin, and C. Chu, 2002 , “Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties. ” Journal of Econometrics, 108,1-24.
Longin, F., and B. Solnik ,1995, “ Is the Corelation in International Equity Returns
Constant: 1960-1990.” Journal of International Money and Finance, 14, 3-26.
Nelson D. B., 1990,“Stationarity and Persistence in the GARCH(1,1) Model.” Econometric theory , 6 ,318-334.
Phillips, P. and P. Perron ,1988, “Testing for Unit Root in Time Series Regression.”Biometrika ,75,335-346.
Tsay, R. S., 2005 ,“Analysis of Financial Time Series.” 2nd ed, Hoboken, N.J.:Wiley.
Tse, Y. K. 2000, “ A Test for Constant Correlations in A Multivariate GARCH Model.”Journal of Econometric, 98, 107-127.
Wei, W . W . S., 2006,“Time Series Analysis:Univartiate and Multivariate Methods.” 2nd ed, New York :Addison Wesley.
杜元隆,1993,“國際股票市場股價關係之實證研究”,國立台灣大學財務金融研究所碩士論文。
邱建良、劉聰衡、紀嘉政,2000,“台灣股市與國際股市共移性之研究”,商管科技季刊第1卷第三期,263~285。
吳清峰,2006,“東亞各國家地區股市價量關係之研究”,國立雲林科技大學管理科學所博士論文。
林裕傑,2009 , “英、法、德、加四國股匯市報酬與美國股匯市報酬連動關係之研究”,國立高雄大學應用經濟學系碩士論文。