簡易檢索 / 詳目顯示

研究生: 劉芝谷
Liu, Chih-Ku
論文名稱: 以元始計算研究一些融鹽的氫鍵及溶劑效應
Ab Initio Studies of Hydrogen Bonding and Solvent Effects in Some Molten Salts
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 106
中文關鍵詞: 元始計算融鹽氫鍵溶劑效應
外文關鍵詞: ab initio, molten salt, solvent effect, hydrogen bonding
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以氫氟原子之間的距離以及鍵性軌域間相互作用能量E(2)來探討(EMI+BF4-)、(EMI+PF6-)、(BMI+BF4-)以及(BMI+PF6-)融鹽系統的氫鍵,發現陽離子H1產生最強的氫鍵,而不同於文獻上的報導,烷基鏈上的氫亦有氫鍵的產生。此研究的結果亦可對最近文獻上的相變化圖提出合理的說明及解釋。

    改變imidazolium陽離子烷基鏈長度的研究中發現到,若陽離子的氮原子上並未以烷基鏈取代而是直接接氫(H6),最主要的氫鍵是由H1以及H6競爭,當氫鍵是由H6所主導時,則其強度甚至於達到形成共價鍵的強度,或許可說明為何文獻上並無此些融鹽的報導。而當陽離子其氮上均用烷基鏈取代時,因為最主要的H1與陰離子形成氫鍵因而造成附近烷基鏈上的氫原子亦形成氫鍵,其最多至烷基鏈上的第二個碳上的氫。對於BF4-、PF6-與一系列imidazolium陽離子產生氫鍵的能力做比較時,由E(2)值的分析發現當陽離子上兩旁取代的烷基鏈長度至兩個碳以上時,產生氫鍵的能力為PF6-較強。

    經由溶劑效應以及氣態的計算結果我們推測,有機溶劑benzene是藉由破壞(EMI+AlCl4-)融鹽系統其陰離子的結構而造成融鹽系統物理性質的改變。未曾於文獻看到相關於有機溶劑加入(EMI+BF4-)、(EMI+PF6-)、(BMI+BF4-)以及(BMI+PF6-)融鹽系統的報導,在此以溶劑效應的計算對其做簡單的探討,提供此數據供實驗者參考,而更深入的研究將於往後繼續探討之。

    The H-bonding in four molten salts, (EMI+BF4-), (EMI+PF6-), (BMI+BF4-), (BMI+PF6-), were first examined by two criteria including the commonly used F…H distance and the orbital interaction energies, E(2). It is found the C(2)-H1 is the predominant H-donating site, which is consistent with related studies reported in literature. Our results, however, can be employed to account for the recent NMR studies on (EMI+BF4-), in which the relaxation times measured for both -carbons also revealed discontinuity as phase change occurred.

    Further investigation performed on effects of alkyl groups (R and R’) on H-bonding has also been made. It is also found that the ring hydrogens, H6, attached to nitrogen is more favored than C(2)-H1 in formation of hydrogen bonding and hence would raise the glass transition temperature. Due to H-bonging between the fluorides and C(2)-H1, the alkyl’s hydrogen, the neighboring - and/or the -hydrogens on the alkyl chains would participate H-bonding depending on the length of the substituted R and R’ groups on the two ring nitrogen atoms, respectively. Therefore, the H-bonding network is more complicated than those found experimentally, which were in general carried out focused on H1. The relative capabilities in H-bonding formation of BF4- and PF6- anions cannot be distinctly determined in the current study, most likely resulted from the multiply-sited H-bonding network. As both R and R’ contain at least two carbons, however, PF6- exhibits higher capability than BF4- in formation of H-bonding with the same RR’I+ through analysis of the magnitudes of E(2).

    Effects of benzene, a non-polar solvent, on (EMI+AlCl4-) has been thoroughly examined. The unexpected experimental observations can be ascribed to the orbital interactions between AlCl4-and benzene, which in return weaken the interaction between the counter ions. Analysis of solvation energies indicated that solvents with higher dielectric constants would increase the conductivity of the four above-stated salts as expected. The two protic solvents, ethanol and methanol, could lead to the same conclusion, which provide a research subject in due course.

    中文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅰ 英文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅱ 目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅲ 表目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅵ 圖目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅷ 重要的英文縮寫及其中文命名∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅹ 第一章 緒論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 第二章 理論背景∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2-1 室溫融鹽簡介∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2-2 天然鍵性軌域(natural bond orbital,NBO)∙∙∙∙∙∙8 2-3 氫鍵(hydrogen bonds)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 2-4 四極核(quadrupolar nuclear)∙∙∙∙∙∙∙∙∙ ∙∙14 2-5 電場梯度與核四極偶合常數∙∙∙∙∙∙∙∙∙∙∙∙∙∙16 2-6 遮蔽常數與化學位移∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19 2-7 元始計算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21 第三章 計算方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙29 第四章 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 31 4-1 (EMI+BF4-)、(EMI+PF6-)、(BMI+BF4-)及(BMI+PF6-)室溫融鹽系 統氫鍵作用力之研究∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙31 4-1-1 (EMI+BF4-)系統∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙32 4-1-2 (BMI+BF4-)系統∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙35 4-1-3 (EMI+PF6-)系統∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙36 4-1-4 (BMI+PF6-)系統∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 4-1-5計算結果與文獻報導之比較∙∙∙∙∙∙∙∙∙∙∙∙∙∙39 4-1-6融鹽系統離子對之共價性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙41 4-1-7 NBO分析所得之額外訊息∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙41 4-2對於一系列不同結構的imidazolium陽離子與BF4-及PF6- 陰離子所組成的融鹽系統其氫鍵作用力之研究∙∙∙∙∙∙43 4-2-1 A type陽離子與BF4-、PF6-陰離子所組成之融鹽系統其氫鍵 作用力的研究∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙44 與BF4-陰離子組成之融鹽系統∙∙∙∙∙∙∙∙∙∙∙∙∙44 與PF6-陰離子組成之融鹽系統∙∙∙∙∙∙∙∙∙∙∙∙∙46 4-2-2 B type陽離子與BF4-、PF6-陰離子所組成之融鹽系統其氫鍵 作用力的研究∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙49 與BF4-陰離子組成之融鹽系統∙∙∙∙∙∙∙∙∙∙∙∙∙49 與PF6-陰離子組成之融鹽系統∙∙∙∙∙∙∙∙∙∙∙∙∙50 4-2-3 以NBO分析B type陽離子一號氫的氫鍵∙∙∙∙∙∙∙∙∙53 4-3 BF4-與PF6-陰離子對imidazolium陽離子產生氫鍵能力之比較 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙55 4-4 有機溶劑影響融鹽系統物理性質因素之探討∙∙∙∙∙∙∙∙59 4-4-1有機溶劑對(EMI+AlCl4-)融鹽系統之影響∙∙∙∙∙∙∙∙59 溶劑效應的計算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙59 氣態的計算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙61 4-4-2有機溶劑對(EMI+BF4-)、(EMI+PF6-)、(BMI+BF4-)及 (BMI+PF6-)融鹽系統之影響∙∙∙∙∙∙∙∙∙∙∙∙∙62 溶劑效應的計算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙63 第五章 結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙66 表格∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙68 圖形∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙85 參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙102 表目錄 表1.(EMI+BF4-)(BMI+BF4-)(EMI+PF6-)(BMI+PF6-)室溫融鹽 其結構、NBO、遮蔽常數、電荷、電場梯度分析結果∙∙∙68 表2. (R-H-BF4)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場梯度 分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙69 表3. (R-H-PF6)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場梯度 分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 70 表4. (R-CH3-BF4)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場梯 度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 71 表5. (R-C2H5-BF4)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場梯 度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 72 表6. (R-C3H7-BF4)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場梯 度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 73 表7. (R-C4H9-BF4)、(R-C5H11-BF4)室溫融鹽其結構、NBO、遮蔽常數、 電荷、電場梯度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙74 表8. (R-CH3-PF6)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場梯 度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 75 表9. (R-C2H5-PF6)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場 梯度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙76 表10. (R-C3H7-PF6)室溫融鹽其結構、NBO、遮蔽常數、電荷、電場 梯度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙77 表11. (R-C4H9-PF6)、(R-C5H11-PF6)室溫融鹽其結構、NBO、遮蔽常數、 電荷、電場梯度分析結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙78 表12. NBO分析—(R-CH3-BF4)、(R-CH3-PF6)、(R-C2H5-PF6)其H1 的ΔE(2)值∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙79 表13. BF4-、PF6-陰離子與EMI+、BMI+陽離子之間的作用能力比較 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙79 表14. NBO分析—H1的ΔE(2)值 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙80 表15. NBO分析—產生氫鍵者其total的ΔE(2)值∙∙∙∙∙∙∙∙80 表16. BF4-、PF6-陰離子電荷總和比較∙∙∙∙∙∙∙∙∙∙∙∙81 表17. BF4-、PF6-陰離子電荷改變量比較∙∙∙∙∙∙∙∙∙∙∙81 表18. H1遮蔽常數變化分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙82 表19.常用有機溶劑對(EMI+AlCl4-)(EMI+BF4-)(EMI+PF6-) (BMI+BF4-)(BMI+PF6-)室溫融鹽的溶劑效應 ∙∙∙∙∙∙∙83 表20. EMI+與AlCl4-與benzene之間的作用∙∙∙∙∙∙∙∙∙∙84 表21. (EMI+AlCl4-)加入benzene後Al-Cl距離的變化∙∙∙∙∙∙84 圖目錄 圖1.不同的imidazolium陽離子之結構分類圖∙∙∙∙∙∙∙∙∙85 圖2.常用有機溶劑的結構及其介電常數值∙∙∙∙∙∙∙∙∙∙ 86 圖3.組成室溫融鹽的有機陽離子結構∙∙∙∙∙∙∙∙∙∙∙∙87 圖4.Hartree-Fock模型修正改善相關圖∙∙∙∙∙∙∙∙∙∙∙∙88 圖5.五個電子之(A)RHF (B)UHF組態圖∙∙∙∙∙∙∙∙∙88 圖6.元始計算流程圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙89 圖7.(EMI+BF4-)、(EMI+PF6-)、(BMI+BF4-)、(BMI+PF6-)結構圖∙90 圖8.R-H系列(A type)陽離子與BF4-陰離子組成之融鹽結構圖∙91 圖9.R-H系列(A type)陽離子與PF6-陰離子組成之融鹽結構圖∙92 圖10.R-CH3系列(B type)陽離子與BF4-陰離子組成之融鹽結構圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙93 圖11.R-C2H5系列(B type)陽離子與BF4-陰離子組成之融鹽結構圖 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙94 圖12.R-C3H7系列(B type)陽離子與BF4-陰離子組成之融鹽結構圖 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙95 圖13.R-C4H9、R-C5H11系列(B type)陽離子與BF4-陰離子組成之 融鹽結構圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙96 圖14.R-CH3系列(B type)陽離子與PF6-陰離子組成之融鹽結構圖 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙97 圖15.R-C2H5系列(B type)陽離子與PF6-陰離子組成之融鹽結構圖 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙98 圖16.R-C3H7系列(B type)陽離子與PF6-陰離子組成之融鹽結構圖 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙99 圖17.R-C4H9、R-C5H11系列(B type)陽離子與PF6-陰離子組成之融鹽結構圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙100 圖18.(C2H5-C2H5-PF6)融鹽系統其結構及軌域作用圖∙∙∙∙∙101

    1.(a) Y. Chauvin, H. Oliver, C. N. Wyrvalski, L. Simon and R. F. J. Souza;
    Catalysis,165, 275(1996).
    (b) T. Welton; Chem. Rev., 99, 2071(1999).
    (c) R. T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove; J. Electrochem.
    Soc., 141, L73(1994).
    (d) A. B. McEwen, H. L. Ngo, K. LeCompet and J. L. Goldman; J. Electrochem.
    Soc., 146, 1687(1999).
    (e) K. R. Seddon; J. Chem. Technol. Biotechnol., 68, 351(1997).
    (f) T. Welton; Chem. Rev., 99, 2071(1999).
    (g) P. Wasserscheid and W. Keim; Angew. Chem., 112, 3926(2000).
    (h) J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser and R. D.
    Rogers; Chem. Commun., 1765(1998).
    (i) S. Chun, S. V. Dzyuba and R. A. Bartsch; Anal. Chem., 73, 3737(2001).
    (j) C. Hardacre, J. D. Holbrey, S. E. J. McMath, D. T. Bowron and A. K. Soper;
    J. Chem. Phys., 118, 237(2003).
    (k) 陳泊余; 國立成功大學博士論文., 2000.
    (l) 黃景帆; 國立成功大學碩士論文., 2001.

    2.(a) A. A. Fannin Jr., L. A. King, J. A. Leviski and J. S. Wilkes; J. Phys.
    Chem.,88,2609(1984).
    (b) Z. Meng, A. Dölle and W. Robert Carper; J. Mol. Struct., 585, 119(2002).
    (c) A. K. Abdul-Sada, A. M. Greenway, P. B. Hitchcock, T. J. Mohammed, K. R.
    Seddon and J. A. Zora; J. Chem. Soc., Chem. commun., 1753(1986).
    (d) K. M. Dieter, C. J. Jr. Dymek, N. E. Heimer, J. W. Rovang and J. S. Wilkes;
    J. Am. Chem. Soc., 110, 2722(1988).
    (e) C. J. Dymek Jr. and J. J. Stewart; Inorg. Chem., 28, 1472(1989).
    (f) A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon and T. J. Welton; J.
    Chem. Soc., Chem. commun., Dalton Trans. 3405(1994).
    (g) J. F. Huang, P. Y. Chen, I. W. Sun and S. P. Wang; Inorg. Chim. Acta., 320,
    7 (2001).
    (h) P. A. Z. Suarez, S. Einloft, J. E. L. Dullius, R. F. Souz and J. J. Dupont;
    J. Chim. Phys., 95, 1626(1998).
    (i) J. Fuller, R. T. Carlin, H. C. DeLong and D. Haworth; J. Chem. Soc., Chem.
    commun., 299 (1994).
    (j) A. D. Headley and N. M. Jackson; J. Phys. Org. Chem., 15, 52(2001).
    (k) J. S. Wilkes and M. J. Zaworotko; J. Chem. Soc., Chem. commun., 965(1992).

    3. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople;“Ab Initio
    Molecular Orbital Theory”, Canada, 1986.

    4. (a) H. M. McConnell; J. Chem., Phys., 26, 226(1957).
    (b) J. A. Pople; Proc. Roy. Soc., A1, 1038(1971).

    5. (a) R. G. Barnes and W. V. Smith; Phys. Rev., 93(1954).
    (b) Y. Kato, U Furukane and H. Takeyama; Bull. Chem. Soc. Japan, 32,
    527(1959).

    6. (a) A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev., 88, 899(1988).
    (b) A. E. Reed and F. Weinhold; J. Chem. Phys., 84, 5687(1986).
    (c) F. Weinhold; J. Mol. Struct. (Theochem), 181, 398(1997).
    (d) N. W. Mitzel and U. Losehand; J. Am. Chem. Soc., 120, 7320(1998).
    (e) P. Hobza, J. Šponer, E. Cubero, M. Orozco and F. J. Luque; J. Phys. Chem.
    B,104, 6286(2000).
    (f) N. B. Wong, Y. S. Cheung, D. Y. Wu, Y. Ren, X. Wang, A. M. Tian and W. K.
    Li; J. Mol. Struct. (Theochem), 507, 153(2000).
    (g) B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Špirko and
    P. Hobza; J. Phys. Chem. A, 105, 5560(2001).
    (h) S. P. Ananthavel and M. Manoharan; Chem. Phys., 269, 49(2001).
    (i) C. Aubauer, T. M. Klapötke and A. Schulz; J. Mol. Strust. (Theochem), 543,
    285(2001).
    (j) W. Yang and D. G. Drueckhammer; J. Am. Chem. Soc., 123, 11004(2001).
    (k) H. Anane, A. Boutalib, I. Nebot-Gil and F. Tomas; J. Phys. Chem. A, 102,
    7070(1998).

    7. S. V. Dzyuba and R. A. Bartsch; Chemphyschem, 3, 161(2002).

    8. (a) P. Y. Chen and I. W. Sun; Electrochim. Acta., 46, 1169(2001).
    (b) J. J. Lee, Y. B. Mo, D. A. Scherson, B. Miller and K. A. Wheeler; J.
    Electrochem. Soc., 148, 799(2001).
    (c) Q. Liao and C. L. Hussey; J. Chem. Eng. Data., 41, 1126(1996).
    (d) Q. Zhu, C. L. Hussey and G. R. Stafford; J. Electrochem. Soc., 148,
    88(2001).
    (e) Y. F. Lin and I. W. Sun; J. Electrochem. Soc., 146, 1054(1999).

    (f) Q. Liao, W. R. Pitner, G. Stewart, C. L. Hussey and G. R. Stafford; J.
    Electrochem. Soc., 144, 936(1997).

    9. A. Bondi; J. Phys. Chem., 68, 441(1964).

    10. D. R. Lide; “Handbook of Chemistry and Physics”, 76th Ed., CRC Press, Boca
    Raton, 1995.

    11. (a) T. P. Das E. L. Hahn; “Nuclear Quadrupole Resonance Spectroscopy”,
    AcademicPress: New York. 1969.
    (b) E. Schemp and P. J. Bray; ed. In “Physical Chemistry An Advance
    Treatise”,6th Handerson Ed., McGraw-Hill, New York, 1955.

    12. H. Liang, H. Li, Z. Wang, F. Wu, L. Chen and X. Huang; J. Phys. Chem. B, 105,
    9966(2001).

    13. (a) E. H. Chen and T. C. Chang; J. Mol. Struct. (Theochem), 429, 153(1998).
    (b) A. E. Reed, R. B. Weinstock and F. Weinhold; J. Chem. Phys., 83,
    735(1985).
    (c) J. P. Foster and F. Weinhold; J. Am. Chem. Soc., 102, 7211(1980).
    (d) E. H. Chen and T. C. Chang; J. Mol. Struct. (Theochem), 431, 127(1998).
    (e) A. E. Reed and Paul von Ragué. Schleyer; J. Am. Chem. Soc., 112,
    1434(1990).
    (f) X. Wang, H. R. Hu, A. Tian, N. B. Wong, S. H. Chien and W. K. Li; Chem.
    Phys. Lett., 329, 483(2000).

    14. R. McWeeny; “Coulson’s Valence”, 3rd Ed., Oxford University Press, New
    York, 1979.

    15. N. S. Isaacs; “Physical Organic Chemistry”, John Wieley and Sons, New York,
    1987. Chapter 2.

    16. J. E. Huheey, E. A. Keiter and R. L. Keiter; “Inorganic Chemistry”, 4th
    Ed., HarperCollins, 1993.

    17. A. E. Reed and F. Weinhold; J. Chem. Phys., 78, 4066(1983).

    18. R. S. Drago; “Physical Methods for Chemists”, 2nd Ed., Mexico, 1992.
    Chapter 14.

    19. (a) M. L. Martin, J. J. Delpuech and J. G. Martin; “Practical NMR
    Spectroscopy”, Heyden and Sons, Ltd, London, 1980. Chpater 7.
    (b) J. W. Emsley, J. Feeney and L. H. Sutcliffe; “High-Resolution Nuclear
    Magnetic Resonance Spectroscopy”, Vol. 2, Pergamon Press: Oxford, 1965.
    (c) T. C. Farrar and E. D. Berker; “Pulse and Fourier Transform NMR
    Introduction to Theory and Methods”, Academic Press: New York, 1971.

    20. E. A. C. Lucken; “Nuclear Quadrupole Coupling Constants”, Academic Press:
    New York, 1969.

    21. (a) K. S. Wang, D. Wang, K. Yang, M. G. Richmond and M. Schwartz; Inorg.
    Chem., 34, 3241(1995).
    (b) S. P. Wang, M. G. Richmond and M. Schwartz; J. Am. Chem. Soc., 114,
    7595(1992).
    (c) S. P. Wang, P. Yuan and M. Schwartz; Inorg. Chem., 29, 484(1990).

    22. T. M. Ho and T. C. Chang; Int. J. Quantum Chem., 57, 229(1996).

    23. F. A. Bovey (with L. Jelinki and P. A. Mirav); “Nuclear Magnetic Resonance
    Spectroscopy”, 2nd Ed., Academic Press, New York, 1988.

    24. W. Gordy and R. L. Cook; “Microwave Molecular spectroscopy”, Wiley,
    New York, 1980.

    25. M. Karplus and J. A. Pople; J. Chem. Phys., 38, 2803(1963).

    26. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations”, Elsevier,
    New York, 1984.

    27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
    Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C.
    Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
    O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
    C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
    Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.
    Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
    Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.
    Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B.
    Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E.
    S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

    28. S. Miertus and J. Tomasi; Chem. Phy., 65, 239(1982).

    29. K. N. Trueblood, C. M. Knobler and J. Waser 著 大一化學(上),劉東昇譯 台
    北:五南圖書出版公司,1986

    下載圖示 校內:2004-06-23公開
    校外:2004-06-23公開
    QR CODE