| 研究生: |
劉芝谷 Liu, Chih-Ku |
|---|---|
| 論文名稱: |
以元始計算研究一些融鹽的氫鍵及溶劑效應 Ab Initio Studies of Hydrogen Bonding and Solvent Effects in Some Molten Salts |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 元始計算 、融鹽 、氫鍵 、溶劑效應 |
| 外文關鍵詞: | ab initio, molten salt, solvent effect, hydrogen bonding |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以氫氟原子之間的距離以及鍵性軌域間相互作用能量E(2)來探討(EMI+BF4-)、(EMI+PF6-)、(BMI+BF4-)以及(BMI+PF6-)融鹽系統的氫鍵,發現陽離子H1產生最強的氫鍵,而不同於文獻上的報導,烷基鏈上的氫亦有氫鍵的產生。此研究的結果亦可對最近文獻上的相變化圖提出合理的說明及解釋。
改變imidazolium陽離子烷基鏈長度的研究中發現到,若陽離子的氮原子上並未以烷基鏈取代而是直接接氫(H6),最主要的氫鍵是由H1以及H6競爭,當氫鍵是由H6所主導時,則其強度甚至於達到形成共價鍵的強度,或許可說明為何文獻上並無此些融鹽的報導。而當陽離子其氮上均用烷基鏈取代時,因為最主要的H1與陰離子形成氫鍵因而造成附近烷基鏈上的氫原子亦形成氫鍵,其最多至烷基鏈上的第二個碳上的氫。對於BF4-、PF6-與一系列imidazolium陽離子產生氫鍵的能力做比較時,由E(2)值的分析發現當陽離子上兩旁取代的烷基鏈長度至兩個碳以上時,產生氫鍵的能力為PF6-較強。
經由溶劑效應以及氣態的計算結果我們推測,有機溶劑benzene是藉由破壞(EMI+AlCl4-)融鹽系統其陰離子的結構而造成融鹽系統物理性質的改變。未曾於文獻看到相關於有機溶劑加入(EMI+BF4-)、(EMI+PF6-)、(BMI+BF4-)以及(BMI+PF6-)融鹽系統的報導,在此以溶劑效應的計算對其做簡單的探討,提供此數據供實驗者參考,而更深入的研究將於往後繼續探討之。
The H-bonding in four molten salts, (EMI+BF4-), (EMI+PF6-), (BMI+BF4-), (BMI+PF6-), were first examined by two criteria including the commonly used F…H distance and the orbital interaction energies, E(2). It is found the C(2)-H1 is the predominant H-donating site, which is consistent with related studies reported in literature. Our results, however, can be employed to account for the recent NMR studies on (EMI+BF4-), in which the relaxation times measured for both -carbons also revealed discontinuity as phase change occurred.
Further investigation performed on effects of alkyl groups (R and R’) on H-bonding has also been made. It is also found that the ring hydrogens, H6, attached to nitrogen is more favored than C(2)-H1 in formation of hydrogen bonding and hence would raise the glass transition temperature. Due to H-bonging between the fluorides and C(2)-H1, the alkyl’s hydrogen, the neighboring - and/or the -hydrogens on the alkyl chains would participate H-bonding depending on the length of the substituted R and R’ groups on the two ring nitrogen atoms, respectively. Therefore, the H-bonding network is more complicated than those found experimentally, which were in general carried out focused on H1. The relative capabilities in H-bonding formation of BF4- and PF6- anions cannot be distinctly determined in the current study, most likely resulted from the multiply-sited H-bonding network. As both R and R’ contain at least two carbons, however, PF6- exhibits higher capability than BF4- in formation of H-bonding with the same RR’I+ through analysis of the magnitudes of E(2).
Effects of benzene, a non-polar solvent, on (EMI+AlCl4-) has been thoroughly examined. The unexpected experimental observations can be ascribed to the orbital interactions between AlCl4-and benzene, which in return weaken the interaction between the counter ions. Analysis of solvation energies indicated that solvents with higher dielectric constants would increase the conductivity of the four above-stated salts as expected. The two protic solvents, ethanol and methanol, could lead to the same conclusion, which provide a research subject in due course.
1.(a) Y. Chauvin, H. Oliver, C. N. Wyrvalski, L. Simon and R. F. J. Souza;
Catalysis,165, 275(1996).
(b) T. Welton; Chem. Rev., 99, 2071(1999).
(c) R. T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove; J. Electrochem.
Soc., 141, L73(1994).
(d) A. B. McEwen, H. L. Ngo, K. LeCompet and J. L. Goldman; J. Electrochem.
Soc., 146, 1687(1999).
(e) K. R. Seddon; J. Chem. Technol. Biotechnol., 68, 351(1997).
(f) T. Welton; Chem. Rev., 99, 2071(1999).
(g) P. Wasserscheid and W. Keim; Angew. Chem., 112, 3926(2000).
(h) J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser and R. D.
Rogers; Chem. Commun., 1765(1998).
(i) S. Chun, S. V. Dzyuba and R. A. Bartsch; Anal. Chem., 73, 3737(2001).
(j) C. Hardacre, J. D. Holbrey, S. E. J. McMath, D. T. Bowron and A. K. Soper;
J. Chem. Phys., 118, 237(2003).
(k) 陳泊余; 國立成功大學博士論文., 2000.
(l) 黃景帆; 國立成功大學碩士論文., 2001.
2.(a) A. A. Fannin Jr., L. A. King, J. A. Leviski and J. S. Wilkes; J. Phys.
Chem.,88,2609(1984).
(b) Z. Meng, A. Dölle and W. Robert Carper; J. Mol. Struct., 585, 119(2002).
(c) A. K. Abdul-Sada, A. M. Greenway, P. B. Hitchcock, T. J. Mohammed, K. R.
Seddon and J. A. Zora; J. Chem. Soc., Chem. commun., 1753(1986).
(d) K. M. Dieter, C. J. Jr. Dymek, N. E. Heimer, J. W. Rovang and J. S. Wilkes;
J. Am. Chem. Soc., 110, 2722(1988).
(e) C. J. Dymek Jr. and J. J. Stewart; Inorg. Chem., 28, 1472(1989).
(f) A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon and T. J. Welton; J.
Chem. Soc., Chem. commun., Dalton Trans. 3405(1994).
(g) J. F. Huang, P. Y. Chen, I. W. Sun and S. P. Wang; Inorg. Chim. Acta., 320,
7 (2001).
(h) P. A. Z. Suarez, S. Einloft, J. E. L. Dullius, R. F. Souz and J. J. Dupont;
J. Chim. Phys., 95, 1626(1998).
(i) J. Fuller, R. T. Carlin, H. C. DeLong and D. Haworth; J. Chem. Soc., Chem.
commun., 299 (1994).
(j) A. D. Headley and N. M. Jackson; J. Phys. Org. Chem., 15, 52(2001).
(k) J. S. Wilkes and M. J. Zaworotko; J. Chem. Soc., Chem. commun., 965(1992).
3. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople;“Ab Initio
Molecular Orbital Theory”, Canada, 1986.
4. (a) H. M. McConnell; J. Chem., Phys., 26, 226(1957).
(b) J. A. Pople; Proc. Roy. Soc., A1, 1038(1971).
5. (a) R. G. Barnes and W. V. Smith; Phys. Rev., 93(1954).
(b) Y. Kato, U Furukane and H. Takeyama; Bull. Chem. Soc. Japan, 32,
527(1959).
6. (a) A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev., 88, 899(1988).
(b) A. E. Reed and F. Weinhold; J. Chem. Phys., 84, 5687(1986).
(c) F. Weinhold; J. Mol. Struct. (Theochem), 181, 398(1997).
(d) N. W. Mitzel and U. Losehand; J. Am. Chem. Soc., 120, 7320(1998).
(e) P. Hobza, J. Šponer, E. Cubero, M. Orozco and F. J. Luque; J. Phys. Chem.
B,104, 6286(2000).
(f) N. B. Wong, Y. S. Cheung, D. Y. Wu, Y. Ren, X. Wang, A. M. Tian and W. K.
Li; J. Mol. Struct. (Theochem), 507, 153(2000).
(g) B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Špirko and
P. Hobza; J. Phys. Chem. A, 105, 5560(2001).
(h) S. P. Ananthavel and M. Manoharan; Chem. Phys., 269, 49(2001).
(i) C. Aubauer, T. M. Klapötke and A. Schulz; J. Mol. Strust. (Theochem), 543,
285(2001).
(j) W. Yang and D. G. Drueckhammer; J. Am. Chem. Soc., 123, 11004(2001).
(k) H. Anane, A. Boutalib, I. Nebot-Gil and F. Tomas; J. Phys. Chem. A, 102,
7070(1998).
7. S. V. Dzyuba and R. A. Bartsch; Chemphyschem, 3, 161(2002).
8. (a) P. Y. Chen and I. W. Sun; Electrochim. Acta., 46, 1169(2001).
(b) J. J. Lee, Y. B. Mo, D. A. Scherson, B. Miller and K. A. Wheeler; J.
Electrochem. Soc., 148, 799(2001).
(c) Q. Liao and C. L. Hussey; J. Chem. Eng. Data., 41, 1126(1996).
(d) Q. Zhu, C. L. Hussey and G. R. Stafford; J. Electrochem. Soc., 148,
88(2001).
(e) Y. F. Lin and I. W. Sun; J. Electrochem. Soc., 146, 1054(1999).
(f) Q. Liao, W. R. Pitner, G. Stewart, C. L. Hussey and G. R. Stafford; J.
Electrochem. Soc., 144, 936(1997).
9. A. Bondi; J. Phys. Chem., 68, 441(1964).
10. D. R. Lide; “Handbook of Chemistry and Physics”, 76th Ed., CRC Press, Boca
Raton, 1995.
11. (a) T. P. Das E. L. Hahn; “Nuclear Quadrupole Resonance Spectroscopy”,
AcademicPress: New York. 1969.
(b) E. Schemp and P. J. Bray; ed. In “Physical Chemistry An Advance
Treatise”,6th Handerson Ed., McGraw-Hill, New York, 1955.
12. H. Liang, H. Li, Z. Wang, F. Wu, L. Chen and X. Huang; J. Phys. Chem. B, 105,
9966(2001).
13. (a) E. H. Chen and T. C. Chang; J. Mol. Struct. (Theochem), 429, 153(1998).
(b) A. E. Reed, R. B. Weinstock and F. Weinhold; J. Chem. Phys., 83,
735(1985).
(c) J. P. Foster and F. Weinhold; J. Am. Chem. Soc., 102, 7211(1980).
(d) E. H. Chen and T. C. Chang; J. Mol. Struct. (Theochem), 431, 127(1998).
(e) A. E. Reed and Paul von Ragué. Schleyer; J. Am. Chem. Soc., 112,
1434(1990).
(f) X. Wang, H. R. Hu, A. Tian, N. B. Wong, S. H. Chien and W. K. Li; Chem.
Phys. Lett., 329, 483(2000).
14. R. McWeeny; “Coulson’s Valence”, 3rd Ed., Oxford University Press, New
York, 1979.
15. N. S. Isaacs; “Physical Organic Chemistry”, John Wieley and Sons, New York,
1987. Chapter 2.
16. J. E. Huheey, E. A. Keiter and R. L. Keiter; “Inorganic Chemistry”, 4th
Ed., HarperCollins, 1993.
17. A. E. Reed and F. Weinhold; J. Chem. Phys., 78, 4066(1983).
18. R. S. Drago; “Physical Methods for Chemists”, 2nd Ed., Mexico, 1992.
Chapter 14.
19. (a) M. L. Martin, J. J. Delpuech and J. G. Martin; “Practical NMR
Spectroscopy”, Heyden and Sons, Ltd, London, 1980. Chpater 7.
(b) J. W. Emsley, J. Feeney and L. H. Sutcliffe; “High-Resolution Nuclear
Magnetic Resonance Spectroscopy”, Vol. 2, Pergamon Press: Oxford, 1965.
(c) T. C. Farrar and E. D. Berker; “Pulse and Fourier Transform NMR
Introduction to Theory and Methods”, Academic Press: New York, 1971.
20. E. A. C. Lucken; “Nuclear Quadrupole Coupling Constants”, Academic Press:
New York, 1969.
21. (a) K. S. Wang, D. Wang, K. Yang, M. G. Richmond and M. Schwartz; Inorg.
Chem., 34, 3241(1995).
(b) S. P. Wang, M. G. Richmond and M. Schwartz; J. Am. Chem. Soc., 114,
7595(1992).
(c) S. P. Wang, P. Yuan and M. Schwartz; Inorg. Chem., 29, 484(1990).
22. T. M. Ho and T. C. Chang; Int. J. Quantum Chem., 57, 229(1996).
23. F. A. Bovey (with L. Jelinki and P. A. Mirav); “Nuclear Magnetic Resonance
Spectroscopy”, 2nd Ed., Academic Press, New York, 1988.
24. W. Gordy and R. L. Cook; “Microwave Molecular spectroscopy”, Wiley,
New York, 1980.
25. M. Karplus and J. A. Pople; J. Chem. Phys., 38, 2803(1963).
26. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations”, Elsevier,
New York, 1984.
27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C.
Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.
Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.
Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B.
Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E.
S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
28. S. Miertus and J. Tomasi; Chem. Phy., 65, 239(1982).
29. K. N. Trueblood, C. M. Knobler and J. Waser 著 大一化學(上),劉東昇譯 台
北:五南圖書出版公司,1986