| 研究生: |
蔡湫雁 Tsai, Chiu-Yen |
|---|---|
| 論文名稱: |
平交道警示系統使用雙介面WAVE設備傳送安全影像資料 Safety Video Data Transmission for the Grade Crossing Alarm System using Dual-Interface WAVE devices |
| 指導教授: |
黃崇明
Huang, Chung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 平交道警示系統 、雙介面WAVE設備 、車用隨機網路 、TCPC頻道分配演算法 、跨車輛服務品質機制 、即刻式頻道切換 |
| 外文關鍵詞: | Grade Crossing Alarm System (GCAS), dual-interface WAVE devices, Vehicular Ad Hoc Networks (VANET), Three Channel per Cycle (TCPC) channel allocation, Inter-QoS scheme, immediate access |
| 相關次數: | 點閱:153 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文在平交道警示系統設計一個通訊協定,使火車駕駛藉由平交道的監測影像資料做出更精確的安全決策。安全性影像資料需要較高的封包傳輸率、足夠的吞吐量與較低的延遲時間,並且此安全影像資料必需較其他非安全性的影像資料擁有較高的優先權。論文中的平交道警示系統設備都是雙介面WAVE設備,包含Road Side Units (RSUs)與火車,其間使用無線車用隨機網路來做溝通。根據雙介面的特性,此論文也為平交道警示系統的RSU設計出每三個頻道做循環的TCPC頻道分配演算法(TCPC channel allocation)。並且為了解決附近其他使用WAVE設備車子所造成的干擾,此論文也設計跨車輛服務品質機制(Inter-QoS scheme)。最後,此論文使用NS-2模擬,呈現即刻式頻道切換(immediate access)在平交道警示系統(GCAS)的情境下,較交換式頻道切換(alternating access)有好的效能,有更低的延遲、更高的封包傳輸率並提供較多吞吐量。使用即刻式頻道切換,可成功讓火車駕駛得到從平交道而來的高品質串流影像資料。
This thesis designs a communication protocol for streaming video data that are captured from a grade crossing. The corresponding communication protocol can be used in the Grade Crossing Alarm System (GCAS) to deliver the monitored video of a grade crossing as an aid for train drivers to make more precise decision for driving through grade crossings. This safety video data have requirements of a higher packet delivery ratio, higher throughput and lower delay and need to have the higher priority than other non-safety video data. Road Side Units (RSUs) and On Board Units (OBUs) used in GCAS adopt dual-interface WAVE devices. Road Side Units (RSUs) and OBUs, which are allocated in trains, used in the proposed GCAS communicate with each other using the wireless Vehicular Ad Hoc Networks (VANET) scenario. According to the dual-interface characteristics, this thesis also proposes a three channel per cycle (TCPC) channel allocation algorithm for RSUs in GACS and an Inter-QoS scheme for other vehicles out of GCAS. Finally, the NS-2 simulation results show that the immediate access performances is better than that of the alternating access in this grade crossing scenario: lower delay, higher packet delivery ratio and higher throughput. Using immediate channel access, train driver can successfully receive the high quality streaming video data from a grade crossing.
[1] IEEE Std. 1609.3-2010, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)--Networking Services, Dec. 30 2010.
[2] IEEE Std. 1609.4-2011, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)--Multi-channel Operation, Feb. 7 2011.
[3] IEEE Std. 802.11p-2010, IEEE Standard for Information technology--Local and metropolitan area networks--Specific requirements--Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, July 15 2010.
[4] C. Ameixieira, J. Matos, R. Moreira, A. Cardote, A. Oliveira and S. Sargento, “An IEEE 802.11p/WAVE implementation with synchronous channel switching for seamless dual-channel access (poster),” IEEE Vehicular Networking Conference (VNC), pp. 214-221, Nov. 2011.
[5] M. Amadeo, C. Campolo, and A. Molinaro, “Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs,” Ad Hoc Networks, vol. 10, no. 2, pp. 253-269, March 2012.
[6] M.J. Booysen, S. Zeadally and G.-J. Rooyen, “Survey of media access control protocols for vehicular ad hoc networks,” IET Communications, vol. 5, no. 11, pp. 1619-1631, July 2011.
[7] C. Campolo, A. Cortese and A. Molinaro, “CRaSCH: A cooperative scheme for service channel reservation in 802.11p/WAVE vehicular ad hoc networks,” International Conference on Ultra Modern Telecommunications & Workshops ICUMT’09, pp. 1-8, Oct. 2009.
[8] Q. Chen, D. Jiang and L. Delgrossi, “IEEE 1609.4 DSRC multi-channel operations and its implications on vehicle safety communications,” IEEE Vehicular Networking Conference (VNC), pp. 1-8, Oct. 2009.
[9] J.-H. Chu, K.-T. Feng, C.-N. Chuah and C.-F. Liu, “Cognitive Radio Enabled Multi-Channel Access for Vehicular Communications,” IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), pp. 1-5, Sept. 2010.
[10] I-C. Chu, P.-Y. Chen and W.-T. Chen, “An IEEE 802.11p Based Distributed Channel Assignment Scheme Considering Emergency Message Dissemination,” IEEE 75th Vehicular Technology Conference (VTC Spring), pp. 1-5, May 2012.
[11] C. Campolo and A. Molinaro, “DREAM: IEEE 802.11p/WAVE extended access mode in drive-thru vehicular scenarios,” IEEE ICC 2012 - Wireless Networks Symposium, pp. 5301-5305, June 2012.
[12] C. Campolo and A. Molinaro, “Multichannel communications in vehicular Ad Hoc networks: a survey,” IEEE Communications Magazine, vol. 51, no. 5, pp. 158-169, May 2013.
[13] N. Ferreira, J.A. Fonseca and J.S. Gomes, “On the adequacy of 802.11p MAC protocols to support safety services in ITS,” Emerging Technologies and Factory Automation ETFA 2008, pp. 1189-1192, Sept. 2008.
[14] P. Fazio, F. De Rango, C. Sottile and C. Calafate, “A New Channel Assignment Scheme for Interference-Aware Routing in Vehicular Networks,” IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1-5, May 2011.
[15] A. J. Ghandour, M. Di Felice, H. Artail and L. Bononi., “Modeling and Simulation of WAVE 1609.4-based Multi-channel Vehicular Ad Hoc Networks,” Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques SIMUTOOLS’12, pp. 148-156, March 2012.
[16] J. Guo, L. Zhang and Z. Liu, “Evaluation and improvement of QoS metrics for safety-critical broadcast services in VANETs,” IEEE Network Infrastructure and Digital Content (IC-NIDC), pp. 44-48, Sept. 2012.
[17] D. Jiang, V. Taliwal, A. Meier, W. Holfelder and R. Herrtwich, “Design of 5.9 ghz dsrc-based vehicular safety communication,” IEEE Wireless Communications, vol 13, no. 5, pp. 36-43, Oct. 2006.
[18] B.-Y. Ku, “Grade-Crossing Safety,” IEEE Vehicular Technology Magazine, vol. 5, no. 3, pp. 75-81, Sept. 2010.
[19] R. Lasowski and R. Schmidt, “A multi-channel Beacon Forwarding approach in dual radio Vehicular Ad-Hoc Networks,” IEEE Intelligent Vehicles Symposium (IV), pp. 522-527, June 2011.
[20] T. K. Mak, K. P. Laberteaux and R. Sengupta, “A Multi-Channel VANET Providing Concurrent Safety and Commercial Services”, Proceedings of the 2nd ACM international workshop on Vehicular ad hoc networks VANET’05, pp. 1-9, Sept. 2005.
[21] J. So and N. Vaidya, “Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminals using a single transceiver,” Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing MobiHoc’04, pp. 222-233, May 2004.
[22] K.-J. Song, C.-H. Lee, M.-S. Woo and S.-G. Min, “Distributed Periodic Access Scheme (DPAS) for the Periodic Safety Messages in the IEEE 802.11p WAVE,” Communications and Mobile Computing (CMC), pp. 465-468, April 2011.
[23] T. Tsuboi, J. Yamada, N. Yamauchi and M. Hayashi, “Dual Receiver Communication System for DSRC,” Future Generation Communication and Networking FGCN’08, pp. 459-464, Dec. 2008.
[24] R.S. Tomar and S. Verma, “RSU centric channel allocation in Vehicular Ad-hoc Networks,” Wireless Communication and Sensor Networks (WCSN), pp. 1-6, Dec. 2010.
[25] S.Y. Wang, C.L. Chou, K.C. Liu, T.W. Ho, W.J. Hung, C.F. Huang, M.S. Hsu, H.Y. Chen and C.C. Lin, “Improving the Channel Utilization of IEEE 802.11p/1609 Networks,” IEEE Wireless Communications and Networking Conference WCNC 2009, pp. 1-6, April 2009.
[26] Q. Wang, S. Leng, H. Fu, Y. Zhang and H. Weerasinghe, “An Enhanced Multi-Channel MAC for the IEEE 1609.4 Based Vehicular Ad Hoc Networks,” INFOCOM IEEE Conference on Computer Communications Workshops, pp. 1-2, March 2010.
[27] J. Wang, Y. Ji, X. Wang and F. Liu, “RSU-coordinated Multi-channel MAC with Multi-criteria Channel Allocation,” International Conference on Connected Vehicles and Expo (ICCVE), pp. 60-65, Dec. 2012.
[28] Z. Yunpeng, L. Stibor, B. Walke, H.-J. Reumerman and A. Barroso, “Towards Broadband Vehicular Ad-Hoc Networks - The Vehicular Mesh Network (VMESH) MAC Protocol,” IEEE Wireless Communications and Networking Conference WCNC 2007, pp. 417-422, March 2007.
[29] L. Zhang, Y. Liu, Z. Wang, J. Guo, Y. Huo,Y. Yao, C. Hu and Y. Sun, “Evaluating and improving the performance of IEEE 802.11p/1609.4 networks with single channel devices,” IEEE 13th International Conference on Communication Technology (ICCT), pp. 877- 881, Sept. 2011.
[30] T. Zhao, S. Lu, W. Yan and X. Li, “A road based multi-channel assignment method for VANET,” International Conference on Computing, Networking and Communications (ICNC), pp. 61-65, Jan. 2013.
[31] R. A. Calvo and J. P. Campo, “Adding Multiple Interface Support in NS-2” [Online]. Available: http://personales.unican.es/aguerocr/files/ucMultiIfacesSupport.pdf, Jan. 2007.
[32] C.-H. Chang, “Implementation of a Multi-Channel Multi-Interface Ad-Hoc Wireless Network” [Online]. Available: http://www2.ensc.sfu.ca/~ljilja/ENSC835/Spring08/Projects/chang/mcmi_report.pdf, 2008.
[33] K. Fall and K. Varadhan, “The ns Manual” [Online]. Available: http://www.isi.edu/nsnam/ns/tutorial/, Nov. 2011.
[34] Taiwan Railways Administration, “Number of Level Crossing” [Online]. Available: http://www.railway.gov.tw/Upload/intro/file/99Year/pdf/t16.pdf, 2012.
[35] Taiwan Railways Administration, “RAILWAY ACCIDENTS RAILWAY ACCIDENTS,” [Online]. Available: http://www.railway.gov.tw/Upload/intro/file/tt16.pdf, 2012.