| 研究生: |
陳琨明 Chen, Kun-Ming |
|---|---|
| 論文名稱: |
釔鋁石榴石螢光體(Y3Al5O12:Ce)之合成與發光特性研究 Synthesis and Luminescence Characterization of Garnet (Y3Al5O12:Ce) Phosphors |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 溶液熱法 、溶膠-凝膠法 、HMDS前置處理法 、釔鋁石榴石螢光體 |
| 外文關鍵詞: | garnet phosphors, sol-gel method, solvothermal method, HMDS pretreatment |
| 相關次數: | 點閱:78 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將釔鋁石榴石螢光體(YAG:Ce)前驅物做HMDS前置處理法,溶膠-凝膠法披覆SiO2於YAG:Ce螢光粉體表面,並以溶液熱法合成出YAG:Ce螢光粉體,以探討其各製程對YAG:Ce螢光體結構,粒徑與發光效率之影響。
研究成果顯示,(1).YAG:Ce前驅物經由HMDS處理後,經FTIR分析可有效的移除部分表面羥基、碳氫基、氮氫基及氮氧基,且高溫煆燒後,經HMDS前置處理的YAG:Ce之PL光譜放射峰之強度會隨之增加,其推測原因為Si4+可取代YAG晶格中Al3+四面體位置,使Ce3+離子更有效擴散摻雜於YAG晶格中進而提升發光強度。從TEM觀察與粒徑分析可知,隨著HMDS的比例增加YAG:Ce粉體粒徑會略為減小。(2).披覆不同比例之SiO2於 YAG:Ce螢光粉體表面,由FTIR分析證實了YAG:Ce奈米螢光粉體裡有SiO2存在,並從SEM-EDX圖顯示SiO2成功的包覆在螢光粉體外圍。且因SiO2包覆在YAG:Ce奈米螢光粉體外圍,減少能量損失於表面上,相對於未披覆SiO2的YAG:Ce螢光粉體有較佳之光致發光效率;並由ICP量測換算出YAG:Ce中SiO215wt%時為最佳之披覆量。(3).以溶熱法合成之YAG:Ce由XRD結果得知溶熱溫度達260℃,壓力1,300psi且持溫8hr時開始有YAG結晶相產生,且在溫度300℃、壓力2,000psi且持溫8hr時達最佳之結晶性。且隨溶熱製程溫度、壓力與反應時間的增加粒徑也隨之增加。然而,由PL光譜圖得知以溶熱合成之YAG:Ce的最佳發光強度,但卻遠劣於以固態燒結法之YAG:Ce(980℃持溫8hr),其推測原因為Ce3+離子在溶熱過程中流失或溶熱法之能量不足以使Ce3+離子有效摻雜入YAG主體晶格中。
This study is to investigate the structure, grain size and luminescence of garnet phosphors (YAG:Ce), which were prepared by a coprecipitation method and then treated with HMDS pretreatment before firing, or coated with SiO2 via sol-gel method of TEOS. The phosphors were also successfully fabricated by the solvothermal method at low temperatures.
The results showed that YAG:Ce precursors with HMDS pretreatment could remove the groups of O-H, C-H, N-H and N-O based on the FTIR measurements. The PL intensity of HMDS-pretreated YAG:Ce after being fired at 980oC revealed to increase as increasing the amount of HMDS in the reaction. The presumed reason was that Si4+ ions would replace the sites of tetrahedral Al3+ ions and promote the dissolution of Ce3+ ions into YAG lattice more efficiently as YAG:Ce was illuminated by blue light. It was also observed from TEM images and particle size analysis that the grain sizes were smaller with HMDS pretreatment than those without it. Secondly, FTIR and SEM-EDS mapping results revealed that SiO2 existed on the surface of YAG:Ce phosphors via the sol-gel reaction of TEOS. The PL intensity of SiO2-coated YAG:Ce phosphors were higher than those without SiO2 coating. Furthermore, the ICP conversion results showed that YAG:Ce with around 15wt% SiO2 coating exhibited optimal PL intensity compared to others. This enhancement was supposed to result from the reduction of surface non-radiation centers. Finally, YAG structure could be produced when the solvothermal conditions were above 260℃/1,300psi/8hr, and the crystallinity attended to be optimal at 300℃/2,000psi/8hr. The grain size of the solvothermal YAG:Ce increased as increasing the temperature, pressure and reaction time. However, the PL intensity of the solvothermal YAG:Ce was inferior to the YAG:Ce after being fired at 980℃ for 8hr. The proposed reasons may be the Ce3+ ions flowing away during the solvothermal reaction or the difficulty for Ce3+ ions to dope into the YAG host significantly.
1. 陳昱霖,”柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料學及工程學系碩士論文,民國90年
2. 黃光弘,“硫化鋅螢光粉披覆二氧化鈦和二氧化矽之製備與特性研究”,國立成功大學材料科學及工程學系碩士論文,民國95年
3. Xia Li , Qiang Li, Jiyang Wang , Shunliang Yang,"Effect of process parameters on the synthesis of YAGnano-crystallites in supercritical solvent”,J. Alloys Compd., 421, 298–302 (2006)
4. Xudong Zhan , Hong Liu, Wen He, Jiyang Wang ,Xia L, Robert I. Boughtonc,“Novel synthesis of YAG by solvothermal method”, J. Crystal Growth., 275 (2005) e1913–e1917
5. Lyuji, Ozawa, “Cathodoluminescence”, Kodansha Ltd. Tokyo,(1990)
6. P. Goldberg, “Luminescence of Inorganic Solids”, Acadamic Press Inc., New York,(1966)
7. K S. Luslick, “Sonochemistry”, Science, 23, 1439~1445(1990)
8. 楊俊英著,“電子產業用螢光材料之應用調查”.工研院,民國81年
9. Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA, p7 (1998)
10. Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA, p64 (1998)
11. G. Blasse and B.C Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany(1994)
12. R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands(1991)
13. 林麗玉,“奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究”,國立交通大學應用化學系碩士論文,民國90年
14. G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany, 1994
15. D. L. Dexter, Chem. Phys., 22, 6, 1063, 1954
16. 徐春祥,黃磊,陸祖宏,發光學報, 20, 239, 1999
17. Zych, C. Brecher, A.J. Wojtowicz, H.Lingertat, “Luminescence properties of Ce-activated YAG optical ceramic scintillator material”, J. Lumin., 75 (1997) 193-203
18. 李風生,“超細粉體技術”,國防工業出版社,北京,中國, 2000
19. 張立德,牟季美,“奈米材料和奈米結構”,科學出版社,北京,中國, 2001
20. N.I. Kovtyukhova, E.V. Buzaneva, C. C. Waraksa, T. E. Mallouk, “ Ultrathin nanoparticle ZnS and ZnS: Mn films: Surface sol-gel synthesis, morphology, photophysical properties “, Mater. Sci. Eng. B, 69, 411–417, (2000)
21. 黃琪傑,“以溶熱法製備硫化鋅奈米粉體之研究”,國立成功大學化學工程系碩士論文,中華民國九十年六月
22. T. Takamori, L.D. David, Am. Ceram. Soc. Bull., 65 (9) (1986) 1282–1286
23. Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, K. Arai, Mater. Res. Bull., 38 (2003) 1257–1265
24. R. I. Walton, Chem. Soc. Rev., 31, 230 (2002)
25. Laudise R A, “Hydrothermal synthesis of crystals”. J. Chem. Eng. News, 9, 30-43 (1987)
26. 陳政群,賴重光,曾繁銘,”超臨界水氧化與超臨界流體技術之發展”,化工資訊與商情,NO.5,pp19,2003/11
27. 呂東原,“二六族化合物半導體量子結構之光學特性研究”,國立海洋大學光電科學研究所碩士論文,民國94年6月
28. The Color Guide and Glossary, http://www.x-rite.com
29. F. J. Avella, “The Cathodoluminescence of Terbium Activated Indium Orthoborate”J. Electrochem. Soc., 113, 1225(1966)
30. R. Jagannathan, S.P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, “Colour Coordinates of Some Photoluminescent Materials” Bull. Electrochem., 4, 597(1988)
31. S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets”, Acta crystallogr. 10, 239 (1957)
32. J.E. Geusic and L.G. Van Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Appl. Phys. Lett., 4, 182 (1964) .
33. S. Geller, “Crystal chemistry of the garnets”, Z. Kristallogr 125, 1(1967)
34. 余昭蓉,“摻加稀土元素鋁酸釔螢光體之合成與特性鑑定”,交通大學應用化學研究所碩士論文,1997年
35. R. C. Ropp, “The Chemistry of Artificial Lighting Devices”, Elsevier, New York, (1993)
36. 黃榮茂,”化學化工百科辭典”,曉園出版社,台北, 1987 .
37. R. R. Jacobs, W.F. Krupke and M.J. Weber, “Measurement of excited state absorption loss for Ce in YAG and implications for tunable 5d-4f rare earth lasers”, Appl. Phys. Lett., 33, 410 (1978)
38. Ernest M. Levin, Carl R. Robbins and Howard F. McMurdie ; Margie K. Reser, “Phase diagrams for ceramists”, 1964
39. G. Gowda, “Synthesis of Yttrium Aluminates by the sol-gel process” J. Mat. Sci. Lett. 5, 1029(1986)
40. M. F. Yang, T. C. D. Huo and H. C. Ling, “Preparation of Y3Al5O12-Based Phosphor Powder” J. Eletrochem. Soc., 134, 493(1987)
41. M. F. Yang, T. C. D. Huo and H. C. Ling, “Preparation of Y3Al5O12-Based Phosphor Powder” J. Eletrochem. Soc., 134, 493(1987)
42. P. Apte, H. Burke and H. Pickup, “Synthesis of Yttrium Aluminum Garnet by Reverse Strike Precipitation” J. Mater. Res., 7, 706(1992)
43. R. P. Rao, “Preparation and Characterization of Fine-Grain Yttrium - Based Phosphors by Sol-gel Process” J. Electrochem. Soc., 143(1996)
44. Y. Liu, Z.-F. Zhang, B. King, J. Halloran snd R. M. Laine, “Synthesis of Yttrium Garnet from Yttrium and Aluminum Isobutyrate Precursors” J. Am. Ceram. Soc., 79, 385(1996)
45. R. V. Kamat, K. T. Pillai, V. N. Vaidya和D. D. Sood, “Synthesis of Yttrium aluminum garnet by the gel entrapment technique using hexamine” Mater. Chem. Phys., 46, 67(1996)
46. R. Manalert 和M. N. Rahamam, “Sol-gel Processing and Sintering of Yttrium Aluminum Garnet(YAG)powders” J. Mater. Sci., 31, 3453(1996)
47. M. Gomi and T. Kanie, “Ce3+, Fe3+-Induced Optical Absorption in Ce, Fe:YAG Prepared by Coprecipitation” Jpn. J. Appl. Phys., 35, 1798(1996)
48. 朱穗君,“納米級鋁酸釔螢光體微粒之製備與特性鑑定”,交通大學應用化學研究所碩士論文,1998年
49. Y. Hakuta, K. Seino, H. Ura, T. Adschiri, H. Takizawa and K. Arai, “Production of phosphor(YAG:Tb)fine particles by hydrothermal synthesis in supercritical water” J. Mater. Chem., 9, 2671(1999)
50. C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminum garnet
nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,”Appl. Phys. Lett., 80, 3608-3610 (2002)
51. C. H. Lu, W. T. Hsu, J. Dhanaraj and R. Jagannathan, “Sol-gel pyrolysis and photoluminescent characteristics of europium-ion doped yttrium aluminum garnetnanophosph,” J. Euro. Ceram. Soc., 24 3723-3729 (2004)
52. M. S. Tsai, M. F. Wan, C. S. Hsiao, “A study of YAG:Ce powder formation via ammonium carbonate precipitation,” revised by Mater. Res. Bull., 2005 .
53. X. Li, H. Liu, J. Wang, H. Cui and F. Han, “YAG:Ce nano-sized phosphor particles prepared by a solvothermal method,” Mater. Res. Bull., 39, 1923-1930 (2004)
54. 吳同峰,“奈米氧化鋯粉體之製作與分析”,台灣大學化學工程研究所碩士論文,2000年
55. Nae-Lih Wu, Sze-Yen Wang, I. A. Rusakova, “Inhibitation of Crystallite Growth in the Sol-gel Synthesis of Nanocrystalline Metal Oxides” Science, 285, 1375(1999)
56. http://www.che.ncku.edu.tw/Documents/DataBase/DBindexChinese.htm
57. JCPDS-ICCD,PDF-number: 882047
58. H. Hilbig, F.H. Kohler, Quantitative 29Si MAS NMR spectroscopy of cement and silica fume containing paramagnetic impurities, Cement and Concrete Research 36, 326-329 (2006)
59. “陶瓷技術手冊”,中華民國粉末冶金學會出版,民國83年,第二章,35頁
60. R. N. Bhargave, D. Gallagher, X. Hong and A. Nurmikko, “Optical Properties of Manganese-Doped Nanocrystals of ZnS”, Phys. Rev. Lett., 72, 416 (1994)
61. http://www.merck.com.tw/19_1f.asp
62. Yiguang Wang, Ligong Zhang, Yi Fan, Jinsong Luo, David E. McCready, Chongmin Wang, and Linan An, “Synthesis, Characterization, and Optical Properties of Pristine and Doped Yttrium Aluminum Garnet Nanopowders”, J. Am. Ceram. Soc., 88, 284–286 (2005)