簡易檢索 / 詳目顯示

研究生: 李庭臺
Lee, Ting-Tai
論文名稱: 以不同粒徑之碳酸鋇和二氧化鈦粉末經由固態反應法製備鈦酸鋇與其相生成之研究
Phase Evolution of Solid-State-Prepared BaTiO3 Starting from BaCO3 and TiO2 Powders of Various Particle Size
指導教授: 黃啓原
Huang, Chi-Yuen
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 鈦酸鋇積層陶瓷電容成核成長動力學計算表面擴散相生成固態反應法粒徑分布
外文關鍵詞: BaTiO3, multilayer ceramic capacitor, X7R, X8R, particle size distribution, nucleation, grain growth, solid-state reaction, thermal dynamic calculation, phase evolution, surface diffusion
相關次數: 點閱:117下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態反應法製備鈦酸鋇 (Solid State BaTiO3, BT)粉末因其成本優勢與優異的介電特性,近期被大量的使用於電子陶瓷元件中,積層陶瓷電容器 (Multi-layer ceramic capacitor) 是其中之一。藉由不同的起始原料:碳酸鋇與二氧化鈦,觀察其結晶相由低溫至高溫的變化、成核的反應、與其陶瓷體的特性。
    為了清楚觀察固態反應初期,鈦酸鋇晶核的形貌,起始原料:2 m2/g 的碳酸鋇與 7 m2/g 的二氧化鈦被使用。所生成 BaTiO3 的目標尺寸為 0.6 μm。600oC 為BaTiO3 (以下簡稱 BT) 與 Ba2TiO4 的起始生成溫度,並可由穿透式電子顯微鏡 (TEM) 之選區繞射,確認中間相Ba2TiO4的存在,從該溫度開始,碳酸鋇與二氧化鈦快速的消耗,並開始鈦酸鋇的成核,隨著溫度升高,立方晶鈦酸鋇晶核 (Cubic BT nuclei) 不斷成長,而成為單一顆粒,煆燒溫度再升高,則正方晶鈦酸鋇 (Tetragonal BT) 可獲得。藉由較粗的起始原料可清楚觀察到在低溫時 BT 的生成與結晶相的轉變。藉由修飾粉末 (dopant) 的添加,獲得了具X7R特性的介電陶瓷體。
    為研究不同起始粒徑的碳酸鋇與二氧化鈦其生成BT的活化能差異與晶核形貌,使用起始原料:BaCO3 (比表面積10 and 30 m2/g) 與 TiO2 (比表面積7 m2/g),其所生成 BaTiO3 的目標尺寸為 0.4 μm。其中較細的碳酸鋇 (30 m2/g) 混合物於 1000oC的煆燒下,固態反應提前,所需的活化能較低且可獲得 c/a > 1.010,均勻,粒徑分布較狹窄且平均粒徑為 350nm 之 BT,其陶瓷體特性滿足 X7R,甚至有機會滿足 X8R 電容溫度特性的要求,並在掃描穿透式電子顯微鏡的元素分析下(STEM-EDS),呈現清楚的核-殼 (Core-Shell) 結構,而修飾粉中的稀土元素,釔(Y),則分布於殼 (shell) 與 晶界 (grain boundary)。
    最後,為了製備 < 0.2 μm 的正方晶系鈦酸鋇,極細的碳酸鋇與二氧化鈦為起始原料:BaCO3 (比表面積30 m2/g) 與TiO2 (比表面積190 m2/g),觀察BT於不同煆燒溫度之相生成。利用 TEM 發現起始原料間的表面擴散於400oC發生,熱重分析 (DTG) 可看出所有的失重反應於600oC以前即完成;使用X-ray 繞射(XRD)偵測500oC的樣品可確定BT 的生成;為此,推論在此起始原料混合系統中,表面擴散與晶格擴散 (bulk lattice diffusion) 應幾乎於同一時期完成,為此,DTG 以單一peak (600oC) 呈現。在煆燒溫度於900oC 與 1000oC,150 nm 以及 250 nm的正方晶 BT (c/a ratio > 1.006) 可從起始原料:比表面積30 m2/g 的BaCO3 與比表面積190 m2/g 的TiO2 分別獲得。其陶瓷體滿足 X7R 電容溫度特性的要求。在STEM-EDS的觀察下,呈現清楚的 Core-Shell 結構,而修飾粉中的稀土元素,Y,則分布於殼 (shell) 與 晶界 (grain boundary)。Core-Shell 結構存在於1000oC-250 nm與900oC-150 nm正方晶相鈦酸鋇的樣品中。

    The solid-state synthesis, phase evolution, and nucleus growth of the barium titanate (BaTiO3, BT) powder were investigated in this study. Rapid nucleus growth and precursor phase formation of BT were observed at a relatively low temperature of 600oC by mixing BaCO3 (2 m2/g) and TiO2 (7 m2/g) with a high-energy bead mill. The decomposition of BaCO3 and the formation of the Ba2TiO4 phase were identified by transmission electron microscopy (TEM). On the basis of this observation, the weight loss observed at 600oC in the derivative thermogravimetry (DTG) curve could also be explained. Furthermore, with increasing calcination temperature, single cubic BT with less than 80 nm fine nuclei/crystallites was observed at 900oC, and tetragonal BT (c/a > 1.008) with an average particle size of 0.4 μm was obtained at 1000oC. With regard to the dielectric properties of sintered ceramics, the relative permittivity (εr) increased with calcination temperature, and the Curie point also shifted to a progressively higher temperature. However, BT nucleus samples (with low calcination temperatures of 800 and 900oC) could not satisfy the X7R requirement (Electric Industries Association Standard, the tolerance of capacitance from –55 to +125oC is ± 15 %) until calcination temperature increased to 1000oC.
    Two different specific surface area of starting BaCO3: 10 and 30 m2/g, are also used to prepare solid-state BaTiO3 powder. DTG and two kinetic models: Kissinger’s and Reich’s relation, are used to study the solid-state reaction of BT. Pure tetragonal BT was obtained at a lower calcination temperature with BaCO3 of higher specific surface area (SSA). The calculation of activation energy (Ea) also agreed with the result that BaCO3 with higher SSA may speed the BT formation and growth. A clear, thin BT layer and nano-sized cubic BT clusters were observed at calcination temperatures of 600 and 700oC. A narrower particle size distribution and pure tetragonal BT with an average particle size of 350 nm were obtained from 30 m2/g of starting BaCO3 at 1000oC. After sintering with reducing atmosphere, the ceramics with potential of X8R or X7R specifications and a clear core/shell microstructure were obtained in this study.
    The phase evolution, nucleation and sintered ceramics of barium titanate powder prepared by solid-state synthesis with an ultra-fine starting material (30 m2/g of BaCO3 and 190 m2/g of TiO2) were investigated. Surface diffusion between BaCO3 and TiO2 was observed at a relatively low temperature of 400oC by transmission electron microscopy (TEM). Rapid nucleation of the BT and cubic BT phases was observed at 500oC by X-ray diffraction (XRD). The derivative thermogravimetry curve clearly shows a single step of BaTiO3 formation at 600oC. In short, pure BT particles with an average particle size of 250nm and high tetragonality were prepared by solid-state synthesis, which produced X7R ceramics with high dielectric permittivity, high resistivity, and a clear core-shell structure.

    第一章 序論 1 1-1 研究背景 1 1-2 研究目的與方法 2 第二章 前人研究及理論基礎 3 2-1 鐵電特性發展史與鈦酸鋇的鈣鈦礦結構介紹 3 2-1-1鈦酸鋇的鐵電特性發展史 3 2-1-2鈦酸鋇的鈣鈦礦結構與其性質 5 2-2 製備鈦酸鋇粉末與反應式 6 2-3 近期固相反應合成法生成鈦酸鋇之研究 8 2-4 合成鈦酸鋇的動力學模式與反應機制 10 2-5 結語 11 第三章 實驗方法與步驟 22 3-1 實驗步驟 22 3-2粉體與陶瓷體的合成製備、分析、與電性質量測 22 第四章 固態法合成之鈦酸鋇相生成與成核觀察 28 4-1 起始粉末,碳酸鋇與二氧化鈦的特性 28 4-2 碳酸鋇與二氧化鈦混合後的起始原料之物理特性 28 4-2-a 混合物形貌與比表面積 28 4-2-b 熱分析 28 4-3 粉末特性 29 4-4 陶瓷體特性 31 4-5 結論 32 第五章 以不同粒徑之碳酸鋇為起始原料經由固態法合成鈦酸鋇之相生成觀察 45 5-1. 前言 45 5-2. 結果與討論 45 5-2-a. 熱分析與動力學計算 45 5-2-b. 粉末特性 47 5-2-c. 陶瓷體特性 48 5-3. 結論 49 第六章 奈米級之碳酸鋇與二氧化鈦為起始原料經由固態法合成鈦酸鋇之相生成觀察 60 6-1. 前言 60 6-2. 結果與討論 60 6-2-a. 熱分析 60 6-2-b. 粉末特性 61 6-2-c. 陶瓷體特性 62 6-3. 結論 64 第七章 總結論 75 參考文獻 76 國際期刊著作表 81 自述 82

    1. W. Känzig, “Histroy of Ferroelectricity 1938-1955,” Ferroelectrics, 74, 285-291 (1987).
    2. A. von Hippel, R. G. Breckenridge, F. G. Chesley, and Laszlo Tisza, “High-Dielectric Constant Ceramics,” Ind. Eng. Chem., 38, 1097-1109 (1946); Ceram. Abs., Feb., 34 (1947).
    3. L. Landau, Phys. Z. Soviet Union, 11, 26 (1937)
    4. C.A. Randall, R. E. Newnham, and L. E. Cross, “History of the First Ferroelectric Oxide, BaTiO3,” http://www.209115.31.62/electronics division/History%of%20Barium%20Titanate.pdf (2004).
    5. H. D. Megaw, “Crystal structure of barium titanate,” Nature, 155, 484-5 (1945).
    6. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics: Second Edition, New York, 964-972 (1976).
    7. Y. M. Chiang, D. Birnie Ⅲ, and W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, John Wiley & Sons, New York, 38-41 (1997).
    8. D. E. Rase and R. Roy, “Phase Equilibria in the System BaO-TiO2,” J. Am. Ceram. Soc., 38, [3], 102-113, (1955).
    9. A. K. Maurice and R. C. Buchana, “Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3,” Ferroelectrics, 74 61-75 (1987).
    10. C. Pithan, D. Hennings, and R. Waser, “Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC,” Int. J. Appl. Ceram. Technol., 2 [1], 1-14 (2005).
    11. K. Kiss, J. Magder, M. S. Vukasovich, and R. J. Lockhart, “Ferroelectrics of Ultrafine Particle Size: Ⅰ, Synthesis of Titanate Powders of Ultrafine Particle Size,” J. Am. Ceramic. Soc., 49 [6], 291-295 (1966).
    12. A. Beauger, J. C. Mutin, and J. C. Niepce, “Role and Behavior of Orthotitanate Ba2TiO4 during the Processing of BaTiO3 Based Ferroelectric Ceramics”, J. Mater. Sci., 19, 195-201 (1984).
    13. 張哲源,以尿素 – 硝酸鋇沉澱之碳酸鋇披覆於二氧化鈦以合成鈦酸鋇之研究。國立成功大學資源工程研究所碩士論文,(2007)。
    14. W. Trzebiatowski, J. Wojciechowska, and J. Damm, “Mechanism of Synthesis of Barium Titanate,” Roczniki Chem., 26, 12-33, (1952).
    15. T. Kubo and K. Shinriki, “Chemical Reaction in the Solid State: Ⅲ, Reaction Between BaCO3 and TiO2 in Solid State,” J. Chem. Soc. Jpn., 55, 49-51, (1952).
    16. T. Kubo and K. Shinriki, “Chemical Reaction in the Solid State: Ⅳ, Interface of Moisture and Carbon Dioxide on Formation of Various Barium Titanates,” J. Chem. Soc. Jpn., 55, 137-40, (1952).
    17. L. K. Templeton and J. A. Pask, “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2,” J. Am. Ceram. Soc., 42, 212-216, (1959).
    18. A. Beauger, J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3. Part 1 Effect of the Gaseous Atmosphere Upon the Thermal Evolution of the System BaCO3 – TiO2,” J. Mater. Sci., 18, 3041-3046, (1983).
    19. A. Beauger, J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3. Part 2 Study of Solid-Solid Reaction Interfaces,” J. Mater. Sci., 18, 3543-3550, (1983).
    20. A. Amin, M. A. Spears, and B. M. Kulwicki, “Reaction of Anatase and Rutile with Barium Carbonate,” J. Am. Ceram. Soc., 66, [10], 733-738, (1983).
    21. W. Hertl, “Kinetics of Barium Titanate Synthesis,” J. Am. Ceram. Soc., 71, [10], 879-883, (1988).
    22. J. C. Niepce and G. Thomas, “About the Mechanism of the Solid Way Synthesis of Barium Metatitanate. Industrial Consequences,” Solid State Ionics (North-Holland), 43, 69-76, (1990).
    23. W. S. Lee, D. F. K. Hennings, and T. Y. Tseng, “Effect of Calcination Temperature and A/B-Ratio on Dielectric Properties of (Ba,Ca)(Ti,Zr,Mn)O3 Multilayer Capacitors with Ni Electrodes,” J. Am. Ceram. Soc., 83, 1402–1406 (2000).
    24. D. F. K. Hennings, B. Seriyati Schreinemacher, and H. Schreinemacher, “Solid –State Preparation of BaTiO3 – Based Dielectrics, using Ultrafine Raw Materials,” J. Am. Ceramic. Soc., 84 2777-2782 (2001).
    25. C. Pithan, D. Hennings, and R. Waser, “Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC,” Int. J. Appl. Ceram. Technol. 2 [1] 1–14 (2005).
    26. C. Ando, R. Yanagawa, H. Chazono, H. Kishi, and M. Senna, “Nuclei-Growth Optimization for Fine-Grained BaTiO3 by Precision-Controlled Mechanical Pretreatment of Starting Powder Mixture,” J. Mater. Res., 19, 3592–3599 (2004).
    27. C. Ando, H. Kishi, H. Oguchi, and M. Senna, “Effects of Bovine Serum Albumin on the Low Temperature Synthesis of Barium Titanate Microparticles via a Solid State Route,” J. Am. Ceram. Soc., 89 [5] 1709–1712 (2006).
    28. R. Yanagawa, M. Senna, C. Ando, H. Chazono, and H. Kishi, “Preparation of 200nm BaTiO3 Particles with their Tetragonality 1.010 Via a Solid-State Reaction Preceded by Agglomeration-Free Mechanical Activation,” J. Am. Ceram. Soc., 90 [3] 809–814 (2007).
    29. C. Ando, K. Tsuzuku, T. Kobayashi, H. Kishi, S. Kuroda, and M. Senna, “Function of Glycine during Solid-State Reaction toward Well-Crystallized Fine Particulate Barium Titanate,” J. Mater. Sci.: Mater Electron, DOI 10.1007/s10854-008-9804-0, (2008).
    30. M. T. Buscaglia, M. Bassoli, V. Buscaglia, and R. Alessio, “Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2,” J. Am. Ceram. Soc., 88 [9] 2374-2379 (2005).
    31. M. T. Buscaglia, M. Bassoli, V. Buscaglia, and R. Vormberg, “Solid-State Synthesis of Nanocrystalline BaTiO3: Reaction Kinetics and Powder Properties,” J. Am. Ceram. Soc., 91 [9] 2862-2869 (2008).
    32. J. S. Reed, Principles of Ceramisc Processing, Second Edition, John Wiley & Sons, New York, 35-49, (1995).
    33. R. E. Carter, “Kinetic Model for Solid State Reactions,” J. Chem. Phys., 34, 2010-2015 (1961).
    34. S. Lee, C. A. Randall, and Z. K. Liu, “Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate,” J. Am. Ceram. Soc., 90 2589-2594 (2007).
    35. H. Schmalzried, Chemical Kinetics of Solids. Verlag, Weinheim, Germany, 146-53, (1995).
    36. J. W. Christian, Transformations in Metals and Alloys, part Ⅰ. Pergamon, Oxford, 525-542 (1981).
    37. M. Avrami, “Kinetics of Phase Change. Ⅱ Transformation-Time relations for Random Distribution of Nuclei,” J. Chem. Phys., 8, 212-224 (1940).
    38. Takaaki Tsurumi, Takashi Sekine, Hirofumi Kakemoto, Takuya Hoshina, Song-Min Nam, Hiroaki Yasuno, and Satoshi Wada, “Evaluation and Statistical Analysis of Dielectric Permittivity of BaTiO3 Powders,” J. Am. Ceram. Soc., 89 [4] 1337–1341 (2006).
    39. K. Kobayashi, T. Suzuki, and Y. Mizuno, “Microstructure Analysis of Solid-State Reaction In Synthesis of BaTiO3 Powder Using Transmission Electron Microscope,” Appl. Phys. Express 1 041602 (2008).
    40. D. Hennings and R. Rosenstein, “Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3,” J. Am. Ceram. Soc., 67, [4], 249-254 (1984).
    41. H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imada, Y. Takahashi, H. Ohsato, and T. Kuda, “The Effect of MgO and Rare-Earth Oxide on Formation Behavior of Core-Shell Structure in BaTiO3,” Jpn. J. Appl. Phys., 36, 5954-5957 (1997).
    42. T. T. Lee, C. Y. Huang, C. Y. Chang, S. P. Lin, C. Y. Su, C. T. Lee and M. Fujimoto: Phase Evolution and Nucleus Growth Observation of Solid-State BaTiO3 Powder Prepared by High-Energy Bead Milling for Raw Material Mixing. Jpn. J. Appl. Phys. 50, 091502 (2011).
    43. C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty, and W. Huebner: Structure Property Relationships in Core-Shell BaTiO3–LiF Ceramics. J. Mater. Res. 8, 871 (1993).
    44. Y. Mizuno, T. Hagiwara, and H. Kishi: Microstructural Design of Dielectrics for Ni-MLCC with Ultra-thin Active Layers. J. Ceram. Soc. Japan. 115, 360 (2007).
    45. T. Wang, X. H. Wang, H. Wen, and L. T. Li: Effect of Milling Process on the Core-Shell Structures and Dielectric Properties of Fine-Grained BaTiO3-Based X7R Ceramic Materials. Int. J. Miner. Metall. Mater., 16, 345 (2009).
    46. D. Hennings: Barium Titanate Based Ceramic Materials for Dielectric Use. Int. J. High Tech. Ceram., 3, 91 (1986).
    47. H. Chazono and M. Fujimoto: Sintering Characteristics and Formation Mechanisms of ‘Core-Shell’ Structure in BaTiO3-Nb2O5-Co3O5 Ternary System. Jpn. J. Appl. Phys., 34, 5354 (1995).
    48. H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Anal. Chem., 29 [11] 1702-1706 (1957).
    49. Leo Reich, “Activation Energy from a Thermogravimetric Trace,” Polymer Letters, 3 [3] 231-234 (1965).
    50. S. Lee, Z. K. Liu, M. H. Kim, and Clive A. Randall, “Influence of Non-Stoichiometry on Ferroelectric Phase Transition in BaTiO3,” J. Appl. Phys., 101 054119/1-8 (2007).
    51. V. Berbenni, A. Marini, and G. Bruni, “Effect of Mechanical Milling on Solid State Formation of BaTiO3 from BaCO3-TiO2 (Rutile) Mixtures,” Thermoc. Act. 374 151-158 (2001).
    52. P. Balaz and B. Plesingerova, “Thermal Properties of Mechanochemically Pretreated Precursors of BaTiO3 Synthesis,” J. Thermal Anal. Calorim. 59 1017-1021 (2000).
    53. E. S. Freeman and B. Carrol, “The Application of Thermoanalytical Techniques to Reaction Kinetics. The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate,” J. Phys. Chem., 62 394-397 (1958).
    54. 張育綸,鹼土碳酸鹽與氧化物的固態反應過程中相生成及物質擴散之研究。國立成功大學資源工程研究所博士論文,(2009)。
    55. Y. L. Chang, H. I. Hsiang, and M. T. Liang, “Phase Evolution during Formation of SrAl2O4 from SrCO3 and α-Al2O3 / AlOOH,” J. Am. Ceram. Soc., 90 2759-2765 (2007).
    56. Y. L. Chang, H. I. Hsiang, and M. T. Liang, “Characterization of Strontium Aluminate Phosphors Prepared from Milled SrCO3,” Ceram. Int., 35, 1027-1032 (2009).
    57. H. I. Hsiang,Y. L. Chang, J. S. Fang, and F. S. Yen, “Polyethyleneimine Surfactant Effect on the Fromation of Nano-sized BaTiO3 Powder via a Solid State Reaction,” J. Alloys Compd. 509 7632-7638 (2011).
    58. A. Lotnyk, S. Senz, and D. Hesse, “Formation of BaTiO3 Thin Films from (110) TiO2 Rutile Single Crystals and BaCO3 by Solid State Reactions,” Solid State Ionics, 177 429-435 (2006).
    59. M. T. Buscaglia, V. Buscaglia, and R. Alessio, “Coating of BaCO3 Crystals with TiO2: Versatile Approach to the Synthesis of BaTiO3 Tetragonal Nanoparticles,” Chem. Mater., 19 711-718 (2007).
    60. T. T. Lee, C. Y. Huang, C. Y. Chang, I. K. Cheng, C. L. Hu, C. T. Lee and M. Fujimoto, “Phase Evolution of Solid-State BaTiO3 Powder Prepared with the Ultrafine BaCO3 and TiO2,” J. Mater. Res., 27 2495-2502 (2012).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE