簡易檢索 / 詳目顯示

研究生: 許祐瑜
Hsu, Yu-Yu
論文名稱: 含非等向性滑移與彈性變形效應之頸軸承線性穩定分析
The Linear Stability Analysis of Journal Bearings –Consideration of Effects of Anisotropic Slip and Elastic Deformation
指導教授: 李旺龍
Li, Wang-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 非等向性滑移邊界條件彈性變形量頸軸承動態特性
外文關鍵詞: anisotropic slip boundary condition, elastic deformation, journal bearing, dynamic characteristics
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微觀情況下非等向性滑移邊界條件是不可忽視的因素,由於擁有不同方向上的影響,它將會改變軸承的性能。而在考慮襯套為非剛體的情況下,材料的彈性變形量亦是重要的考慮因素,它將會影響到油膜厚度的部分。此外,工程實際的運作上不希望因為高轉速、高負載或是其他因素導致頸軸承的不穩定性,危及整個機械系統的安全運行,因此軸承穩定性的分析研究是相當重要的。
    本文使用含非等向性滑移邊界條件的修正型雷諾方程式並考慮彈性變形量δ的影響,以給定負載的方式求出偏心比與姿態角計算軸承性能。而修正型雷諾方程式則使用微擾法來線性化以進行穩定性分析。將推導獲得的穩態與動態方程式透過有限元素法求解得到不同變因之下(楊氏模數、轉速、負載、不同滑移方向及滑移長度)的臨界質量變化。
    結果表明在短軸承中襯套楊氏模數越大時,軸承的穩定性下降,而在長軸承中襯套楊氏模數越大時,穩定性則會提高。當提高轉速時,軸承的穩定性會稍微下降,並且楊氏模數對臨界質量的影響逐漸無關。而在考慮非等向性滑移邊界條件的影響時,發現在細長比大於1的軸承中移動表面或靜止表面的y方向滑移,可以提高軸承的臨界質量,並且隨著細長比增加y方向滑移對臨界質量提高的幅度更大,但是滑移效應對臨界頻率的影響則不大。當負載較小時,滑移的影響增加。

    In this study, the modified Reynolds equation with anisotropic slip boundary conditions is used to analyze the stability of the modified Reynolds equation by using the perturbation method under the influence of elastic deformation. According to the real working situation, it is different from the solution of the given eccentricity ratio of the journal bearing hydrodynamic problem, but is solved by the given load. The derived steady-state and dynamic equations are solved by the finite element method (FEM), and the critical mass changes under different variables (Young's modulus, rotating speed, load, different slip directions and slip lengths) are discussed.
    The results show that the slip direction of different surfaces will affect the stability of journal bearing. When the slenderness ratio is greater than 1, the sliding in y-direction on the moving surface or stationary surface is helpful to improve the stability, but the slip has little effect on the critical frequency. When the rotating speed is increased, the stability of journal bearing will decrease, and the critical mass will decrease to a certain value with the increase of the speed. The larger the Young's modulus in short bearings, the lower the stability, while the larger the Young's modulus in long bearings, the higher the stability.

    中文摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號表 XX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 潤滑軸承的發展 2 1.2.2 邊界條件 3 1.2.3 等向性滑移邊界 4 1.2.4 非等向性滑移邊界 4 1.2.5 襯套彈性變形量 6 1.2.6 軸承的動態特性 8 1.3 研究動機與目的 10 1.4 本文架構 10 第二章 研究理論 13 2.1 統御方程式 13 2.1.1 基本假設 13 2.1.2 質量守恆方程式 14 2.1.3 動量守恆方程式 15 2.1.4 Navier-Stokes方程式 18 2.1.5 雷諾方程式(Reynolds equation) 19 2.2 滑移邊界條件 21 2.3 修正型雷諾方程式 22 2.4 油膜厚度 25 2.5 軸承負載 26 2.6 摩擦扭矩與摩擦係數 28 2.7 線彈性力學 29 第三章 線性穩定分析 36 3.1 線性化雷諾方程式 36 3.2 動態係數定義 39 3.3 軸承穩定性 41 第四章 數值方法 45 4.1 有限元素法 45 4.1.1 空間離散化 46 4.1.2 Galerkin 法 46 4.1.3 離散化形式 47 4.1.4 Newton-Raphson 法 48 4.2 空蝕效應 49 4.3 模型計算流程和網格靈敏度測試 50 4.4 模型驗證 51 第五章 結果與討論 57 5.1 襯套材料選用及操作條件 57 5.2 軸承穩態分析 58 5.2.1 彈性變形量對壓力分佈及油膜厚度的影響 58 5.2.2 非等向性滑移邊界條件對流量因子的影響 58 5.2.3 非等向性滑移邊界條件對偏心比及姿態角的影響 61 5.2.4 楊氏模數對偏心比及姿態角的影響 61 5.2.5 轉速對偏心比及姿態角的影響 62 5.3 動態係數分析 63 5.3.1 非等向性邊界滑移條件之影響 63 5.3.2 不同楊氏模數之影響 64 5.3.3 不同轉速之影響 64 5.4 線性穩定分析 65 5.4.1 穩定性判斷 65 5.4.2 非等向性邊界滑移條件之影響 66 5.4.3 不同楊氏模數之影響 68 5.4.4 不同轉速之影響 69 5.4.5 不同負載下轉速及楊氏模數之影響 70 5.4.6 含/不含彈性變形量及不同負載對臨界質量的影響 71 第六章 結論 114 參考文獻 115 附錄一 座標軸轉換 122 附錄二 動態方程式 123 附錄三 124

    [1] Hirn, G. A. (1854), “Sur les principaux phénomènes que présentent les frottements médiats, et sur les diverses manières de déterminer la valeur mécanique des matières au graissage des machines”, Bull.de la. Soc. Ind. de Mulhouse, (26), 188-277.
    [2] DOWSON, D., HIRN, G. A., & PETROV, N. P. (1978), “MEN OF TRIBOLOGy1”, Journal of Lubrication Technology, 100, 311.
    [3] Petrov, N. P. (1883), “Friction in Machines and the Effect of the Lubricant”, Inzh. Zh., St-Peterb.
    [4] Tower, B. (1883), “First report on friction experiments”, Proceedings of the institution of mechanical engineers, 34(1), 632-659.
    [5] Reynolds, O. (1886), “IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil”, Philosophical transactions of the Royal Society of London, 177, 157-234.
    [6] Craig, V. S., Neto, C., & Williams, D. R. (2001), “Shear-dependent boundary slip in an aqueous Newtonian liquid”, Physical review letters, 87(5), 054504.
    [7] Bonaccurso, E., Kappl, M., & Butt, H. J. (2002), “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects”, Physical Review Letters, 88(7), 076103.
    [8] Zhu, Y., & Granick, S. (2001), “Rate-dependent slip of Newtonian liquid at smooth surfaces”, Physical review letters, 87(9), 096105.
    [9] Zhu, Y., & Granick, S. (2002), “Apparent slip of Newtonian fluids past adsorbed polymer layers”, Macromolecules, 35(12), 4658-4663.
    [10] Zhu, Y., & Granick, S. (2002), “Limits of the hydrodynamic no-slip boundary condition”, Physical review letters, 88(10), 106102.
    [11] Zhu, Y., & Granick, S. (2002), “No-slip boundary condition switches to partial slip when fluid contains surfactant”, Langmuir, 18(26), 10058-10063.
    [12] Pit, R., Hervet, H., & Leger, L. (2000), “Direct experimental evidence of slip in hexadecane: solid interfaces”, Physical review letters, 85(5), 980.
    [13] Lauga, E., & Stone, H. A. (2003), “Effective slip in pressure-driven Stokes flow”, Journal of Fluid Mechanics, 489, 55-77.
    [14] Cottin-Bizonne, C., Barentin, C., Charlaix, É., Bocquet, L., & Barrat, J. L. (2004), “Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description”, The European Physical Journal E, 15(4), 427-438.
    [15] Sbragaglia, M., & Prosperetti, A. (2007), “Effective velocity boundary condition at a mixed slip surface”, Journal of Fluid Mechanics, 578, 435-451.
    [16] Ou, J., Perot, B., & Rothstein, J. P. (2004), “Laminar drag reduction in microchannels using ultrahydrophobic surfaces”, Physics of fluids, 16(12), 4635-4643.
    [17] Joseph, P., Cottin-Bizonne, C., Benoit, J. M., Ybert, C., Journet, C., Tabeling, P., & Bocquet, L. (2006), “Slippage of water past superhydrophobic carbon nanotube forests in microchannels”, Physical review letters, 97(15), 156104.
    [18] Navier, C. L. M. H. (1823), “Mémoire sur les lois du mouvement des fluides”, Mémoires de l’Académie Royale des Sciences de l’Institut de France, 6(1823), 389-440.
    [19] Vinogradova, O. I. (1999), “Slippage of water over hydrophobic surfaces”, International journal of mineral processing, 56(1-4), 31-60.
    [20] Li, W. L., Chu, H. M., & Chen, M. D. (2006), “The partially wetted bearing—extended Reynolds equation”, Tribology international, 39(11), 1428-1435.
    [21] Spikes, H. A. (2003), “The half-wetted bearing. Part 1: extended Reynolds equation”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(1), 1-14.
    [22] Spikes, H. A. (2003), “The half-wetted bearing. Part 2: potential application in low load contacts”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(1), 15-26.
    [23] Fortier, A. E., & Salant, R. F. (2005), “Numerical analysis of a journal bearing with a heterogeneous slip/no-slip surface”, Journal of Tribology, 127 (4) (2005), pp. 820-825.
    [24] Wang, L. L., Lu, C. H., Wang, M., & Fu, W. X. (2012), “The numerical analysis of the radial sleeve bearing with combined surface slip”, Tribology International, 47, 100-104.
    [25] Aurelian, F., Patrick, M., & Mohamed, H. (2011), “Wall slip effects in (elasto) hydrodynamic journal bearings”, Tribology International, 44(7-8), 868-877.
    [26] Tauviqirrahman, M., Muchammad, Jamari, & Schipper, D. J. (2014), “Numerical study of the load-carrying capacity of lubricated parallel sliding textured surfaces including wall slip”, Tribology Transactions, 57(1), 134-145.
    [27] Chen, C. Y., Chung, C. J., Wu, B. H., Li, W. L., Chien, C. W., Wu, P. H., & Cheng, C. W. (2012), “Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals”, Applied Physics A, 107(2), 345-350.
    [28] Chen, C. Y., Wu, B. H., Chung, C. J., Li, W. L., Chien, C. W., Wu, P. H., & Cheng, C. W. (2013), “Low-friction characteristics of nanostructured surfaces on silicon carbide for water-lubricated seals”, Tribology Letters, 51(1), 127-133.
    [29] Ishida, N., Inoue, T., Miyahara, M., & Higashitani, K. (2000), “Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy”, Langmuir, 16(16), 6377-6380.
    [30] Wang, Y., & Bhushan, B. (2010), “Boundary slip and nanobubble study in micro/nanofluidics using atomic force microscopy”, Soft Matter, 6(1), 29-66.
    [31] Zheng, Y., Gao, X., & Jiang, L. (2007), “Directional adhesion of superhydrophobic butterfly wings”, Soft Matter, 3(2), 178-182.
    [32] Craig, V. S., Neto, C., & Williams, D. R. (2001), “Shear-dependent boundary slip in an aqueous Newtonian liquid”, Physical review letters, 87(5), 054504.
    [33] Stroock, A. D., Dertinger, S. K., Whitesides, G. M., & Ajdari, A. (2002), “Patterning flows using grooved surfaces”, Analytical chemistry, 74(20), 5306-5312.
    [34] Stone, H. A., Stroock, A. D., & Ajdari, A. (2004), “Engineering flows in small devices: microfluidics toward a lab-on-a-chip”, Annu. Rev. Fluid Mech., 36, 381-411.
    [35] Bazant, M. Z., & Vinogradova, O. I. (2008), “Tensorial hydrodynamic slip”, Journal of Fluid Mechanics, 613, 125-134.
    [36] Belyaev, A. V., & Vinogradova, O. I. (2010), “Effective slip in pressure-driven flow past super-hydrophobic stripes”, Journal of Fluid Mechanics, 652, 489-499.
    [37] Chen, C. Y., Chen, Q. D., & Li, W. L. (2013), “Characteristics of journal bearings with anisotropic slip”, Tribology International, 61, 144-155.
    [38] Jao, H. C., Chang, K. M., Chu, L. M., & Li, W. L. (2016), “A lubrication theory for anisotropic slips and flow rheology”, Tribology Transactions, 59(2), 252-266.
    [39] Jao, H. C., Chang, K. M., Chu, L. M., & Li, W. L. (2016), “A modified average Reynolds equation for rough bearings with anisotropic slip”, Journal of Tribology, 138(1), 011702.
    [40] Jao, H. C., Li, W. L., & Liu, T. L. (2017), “Analysis of misaligned journal bearing with herringbone grooves: consideration of anisotropic slips”, Microsystem Technologies, 23(10), 4687-4698.
    [41] Ambekar, A. M., & Raghunandana, K. (2022), “Impact of wall slip on the sliding surfaces of lemon bearings operated with non-Newtonian lubricants”, Materials Today: Proceedings, 52, 1763-1770.
    [42] Pinchbeck, P. H. (1962), “A review of plastic bearings”, Wear, 5(2), 85-113.
    [43] Steinbuch, R. T. (1962), “Nylon 6 as a bearing material”, Wear, 5(6), 458-466.
    [44] Lancaster, J. K. (1973), “Dry bearings: a survey of materials and factors affecting their performance”, Tribology, 6(6), 219-251.
    [45] Hamrock, B. J., Schmid, S. R., & Jacobson, B. O. (2004), “Fundamentals of fluid film lubrication”, CRC press.
    [46] Higginson, G. R. (1965), “Paper 1: The theoretical effects of elastic deformation of the bearing liner on journal bearing performance”, Proceedings of the Institution of Mechanical Engineers, 180(2), 31-38.
    [47] Hooke, C. J., Brighton, D. K., & O’Donoghue, J. P. (1966), “Paper 10: The Effect of Elastic Distortions on the Performance of Thin Shell Bearings”, Proceedings of the Institution of Mechanical Engineer,181(2), 63-69.
    [48] O’Donoghue, J. P. D. K. C. J., Brighton, D. K., & Hooke, C. J. K. (1967), “The effect of elastic distortions on journal bearing performance”, Journal of Lubrication Technology, 89(4), 409-415.
    [49] Brighton, D. K., Hooke, C. J., & O’donoghue, J. P. (1967), “Paper 23: A Theoretical and Experimental Investigation of the Effect of Elastic Distortions on the Performance of Journal Bearings”, Proceedings of the Institution of Mechanical Engineers, 182(14), 192-200.
    [50] Mokhiamer, U. M., Crosby, W. A., & El-Gamal, H. A. (1999), “A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner”, Wear, 224(2), 194-201.
    [51] Osman, T. A. (2004), “Effect of lubricant non-Newtonian behavior and elastic deformation on the dynamic performance of finite journal plastic bearings”, Tribology Letters, 17(1), 31-40.
    [52] Attia Hili, M., Bouaziz, S., Maatar, M., Fakhfakh, T., & Haddar, M. (2010), “Hydrodynamic and elastohydrodynamic studies of a cylindrical journal bearing”, Journal of hydrodynamics, 22(2), 155-163.
    [53] Wang, Y., Yin, Z., Jiang, D., Gao, G., & Zhang, X. (2016), “Study of the lubrication performance of water-lubricated journal bearings with CFD and FSI method”, Industrial Lubrication and Tribology, 68(3), 341-348.
    [54] Wang, Y., Yin, Z., Gao, G., & Zhang, X. (2017), “Analysis of the performance of worn hydrodynamic water-lubricated plain journal bearings considering cavitation and elastic deformation”, Mechanics & Industry, 18(5), 508.
    [55] Gong, J., Jin, Y., Liu, Z., Jiang, H., & Xiao, M. (2019), “Study on influencing factors of lubrication performance of water-lubricated micro-groove bearing”, Tribology International, 129, 390-397.
    [56] 施震陽(2019),「含非等向性滑移與彈性變形量之頸軸承液動分析」,國立成功大學材料科學與工程學系碩士論文。
    [57] Malki, M., Larbi, S., Boubendir, S. A., Hammoudi, D., & Bennacer, R. (2021), “Elastic Deformation Effects on Self-Lubricating Journal Bearings Using Pseudo-Plastic Lubricants”, Tribology Online, 16(4), 299-308.
    [58] Swamy, S. T. N., Prabhu, B. S., & Rao, B. V. A. (1977), “Steady state and stability characteristics of a hydrodynamic journal bearing with a non-Newtonian lubricant”, Wear, 42(2), 229-244.
    [59] Capone, G., Russo, M., & Russo, R. (1987), “Dynamic characteristics and stability of a journal bearing in a non-laminar lubrication regime”, Tribology international, 20(5), 255-260.
    [60] Cheng, F., & Ji, W. (2016), “A velocity-slip model for analysis of the fluid film in the cavitation region of a journal bearing”, Tribology International, 97, 163-172.
    [61] Bhattacharya, A., Dutt, J. K., & Pandey, R. K. (2017), “Influence of hydrodynamic journal bearings with multiple slip zones on rotordynamic behavior”, Journal of Tribology, 139(6), 061701.
    [62] Hamdavi, S., Rao, T. V. V. L. N., Muhammad, M., Faez, K. M., & Ya, H. H. (2017), “Linear stability analysis of short journal bearing with an axial groove: Lineare Stabilitätsanalyse von Kurzgleitlagern mit einer axialen Nut”, Materialwissenschaft und Werkstofftechnik, 48(3-4), 210-217.
    [63] Li, W. L., Huang, Z. H., Lin, C. S., Chen, T. H., & Shyu, S. H. (2019), “On the linear stability analysis of journal bearings-Consideration of coupled effects of anisotropic slip and surface roughness”, Tribology International, 137, 254-266.
    [64] Rao, T. V. V. L. N., Rani, A. M. A., Mohamed, N. M., Ya, H. H., Awang, M., & Hashim, F. M. (2021), “Stability Analysis of Partial Slip Texture Journal Bearing”, In Proceedings of the 6th National Symposium on Rotor Dynamics, 217-225.
    [65] Arif, M., Kango, S., & Shukla, D. K. (2022), “Effect of slip boundary condition and non-newtonian rheology of lubricants on the dynamic characteristics of finite hydrodynamic journal bearing”, Surface Topography: Metrology and Properties, 10(1), 015002.
    [66] Jain, S. C., Sinhasan, R., & Singh, D. V. (1982), “Elastohydrodynamic analysis of a cylindrical journal bearing with a flexible bearing shell”, Wear, 78(3), 325-335.
    [67] Jain, S. C., Sinhasan, R., & Singh, D. V. (1982), “The performance characteristics of thin compliant shell journal bearings”, Wear, 81(2), 251-261.
    [68] Majumdar, B. C., Brewe, D. E., & Khonsari, M. M. (1988), “Stability of a rigid rotor supported on flexible oil journal bearings”, Journal of Tribology, 110(1), 181-187.
    [69] Nair, K. P., Nair, V. S., & Jayadas, N. H. (2007), “Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant”, Tribology International, 40(2), 297-305.
    [70] Mongkolwongrojn, M., & Aiumpronsin, C. (2010), “Stability analysis of rough journal bearings under TEHL with non-Newtonian lubricants”, Tribology International, 43(5-6), 1027-1034.
    [71] Verma, S., Kumar, V., & Gupta, K. D. (2012), “Performance analysis of flexible multirecess hydrostatic journal bearing operating with micropolar lubricant”, Lubrication Science, 24(6), 273-292.
    [72] Bansal, P., Chattopadhayay, A. K., & Agrawal, V. P. (2015), “Linear stability analysis of hydrodynamic journal bearings with a flexible liner and micropolar lubrication”, Tribology Transactions, 58(2), 316-326.
    [73] Shi, Y. F., Li, M., Zhu, G. H., & Yu, Y. (2018), “Dynamics of a rotor system coupled with water-lubricated rubber bearings”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(23), 4263-4277.
    [74] Lund, J. W., & Thomsen, K. K. (1978), “A calculation method and data for the dynamic coefficients of oil-lubricated journal bearings”, Topics in fluid film bearing and rotor bearing system design and optimization, (1000118).
    [75] Wu, S. R. (1986), “A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication”, International Journal of Engineering Science, 24(6), 1001-1013.
    [76] Lahmar, M., Ellagoune, S., & Bou-Saïd, B. (2010), “Elastohydrodynamic lubrication analysis of a compliant journal bearing considering static and dynamic deformations of the bearing liner”, Tribology Transactions, 53(3), 349-368.
    [77] Thomsen, K., & Klit, P. (2012), “Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 226(8), 651-660.
    [78] Mouassa, A., Boucherit, H., Bou-Saïd, B., Lahmar, M., Bensouilah, H., & Ellagoune, S. (2015), “Steady-state behavior of finite compliant journal bearing using a piezoviscous polar fluid as lubricant”, Mechanics & Industry, 16(6), 608.
    [79] Cha, M., Isaksson, P., & Glavatskih, S. (2013), “Influence of pad compliance on nonlinear dynamic characteristics of tilting pad journal bearings”, Tribology International, 57, 46-53.
    [80] Gunnuang, W., Aiumbhornsin, C., Wongsa-Ngam, J., & Mongkolwongrojn, M. (2020), “Effect of bearing materials on journal bearings under TEHL with lubricant based on Carreau model”, Journal of the Chinese Institute of Engineers, 43(2), 162-170.
    [81] Zuo, H., Javadpour, F., Deng, S., Jiang, X., Li, Z., & Li, H. (2020), “Reassessing water slippage in hydrophobic nanostructures”, The Journal of Chemical Physics, 153(19), 191101.
    [82] 黃振華(2017),「含歪斜軸承的線性穩定分析」,國立成功大學材料科學與工程學系碩士論文。

    無法下載圖示 校內:2027-08-23公開
    校外:2027-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE