簡易檢索 / 詳目顯示

研究生: 陳彥綸
Chen, Yen-Lun
論文名稱: 新穎含鄰苯二酚與羧酸甜菜鹼基分子合成探討
Study of synthesis of novel molecule with catecholic and carboxybetaine structure
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 鈦金屬基材多巴胺鄰苯二酚雙電性分子抗積垢
外文關鍵詞: titanium substrate, dopamine, catechol, zwitterionic ions, anti-fouling
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦金屬及其合金具有良好的機械性質以及加工性,同時也具有優良的生物相容性,適合做為生醫植入物,然而鈦基材表面與體內血液接觸時相容性不佳,需要藉由表面改質改善鈦金屬的血液相容性。過去學者研究臨岸生物貝類淡菜(Mussel),淡菜能分泌有特殊胺基酸結構(Dihydroxyphenylalanine, DOPA)的黏性蛋白質,賦予它自身在海岸環境下仍能穩固黏著在岩岸礁石的能力,受此概念刺激,有學者使用DOPA 分子——多巴胺(Mussel-inspired biomimetic molecule dopamine)進行表面改質相關研究。多巴胺與DOPA 分子結構上相似,具有鄰-苯二酚(catechols)結構,此結構的化學性質讓它能作為錨定基團(Anchor group)能與鈦基材表面形成鍵結。含雙電性結構的表面改質能達到抗積垢(Anti-fouling)的效果,進而提升改質鈦金屬基材血液相容性。
    本研究目標為利用羧酸甜菜鹼基提供雙電性,並利用多巴胺作為起始務提供鄰苯
    二酚基團作為錨定基團,合成3-((3,4-dihydroxyphenethyl)dimethylammonio)propanoate (carboxybetaine dopamine, CB-DA)分子,並預期後續表面改質能賦予鈦金屬表面抗積垢性質。然而,CB-DA 的合成路徑以及純化程序,由於官能基反應性、副反應、產物不穩定性等,經歷許多嘗試與修正,因此本研究主要集中於合成路徑的選擇以及在純化所遭遇到的問題,而合成後產物利用NMR 進行結構鑑定。此外,雙電性分子其自身維持電中性的同時,仍帶有正電及負電基團,用以表面改質後具有的抗積垢效果卻仍未被了解清楚;因此,除雙電性分子CB-DA,本研究合成同樣具有鄰苯二分作為改質之錨定基團,但末端含有不同官能基的分子,利用在一定酸鹼環境下自身酸解離度以及可質子化的差異,賦予改質後鈦金屬表面不同表面電荷,藉此探討表面電荷與生物性分子(如:血小板)之間的相互作用以了解抗積垢的起因。

    Titanium and its alloys are widely known implant biomaterials. Due to mechanical strength, anti-corrosion ability and biocompatibility, it is widely applied on hard tissue replacement implants, coronary stent, etc. However, direct contact of titanium interface with blood accompanies nonspecific protein adsorption and bacteria adhesion, which will induce adverse pathogenic problems, such as tissue adhesion, thrombosis or infection. In order to solve this critical issue, anti-fouling (i.e. protein and/or bacteria adsorption resistant) characteristics are desperately needed for an implant device. Varieties of chemical treatments and physical methods were developed to enhance antifouling performance on titanium substrate.
    In this study, 3-((3,4-dihydroxyphenethyl)dimethylammonio)propanoate (carboxybetaine dopamine, CB-DA), an unprecedentedly synthesized compound containing both catechol and zwitterionic carboxybetaine functionalities, was designed and synthesized in order to render the titanium surface antifouling properties via active catecholic-bonding. Meanswhile, compounds containing catecholic anchor group with different functional endgroup were also synthesized and is expected to used for investigating interaction between surface charge and surrounding biomolecules, such as platelets.
    Although CB-DA is a novel zwitterionic compound with high potential for anti-fouling applications, complicated purification and tedious work-up were necessarily needed due to the fact that synthesis route of CB-DA is severely limited to happening of side-reaction, reactivity of reactant, and stability of product. This study focused on the synthesis route and preparation of CB-DA. NMR was used to analyze synthesized compounds. The success of CB-DA synthesis and the improvement of production will highly increase its feasibility on anti-fouling application.

    目錄 中文摘要 I EXTENDED ABSTRACT II 誌謝 XXV 目錄 XXVII 表目錄 XXXI 圖目錄 XXXI 第1章 緒論 1 第2章 文獻回顧 3 2-1 生醫植入物 3 2-1-1 選用考量 4 2-1-2 生醫材料的選擇 7 2-1-3 植入部位 8 2-2 鈦金屬及其合金於生醫材料 10 2-2-1 生醫材料上之應用 10 2-2-2 作為生醫材料常見問題 15 2-3 凝血機制 19 2-3-1 血小板構造 19 2-3-2 血小板機能 21 2-3-3 凝血機制 23 2-4 含胺基鄰苯二酚衍生物於表面改質 26 2-4-1 淡菜及其黏附機制 28 2-4-2 黏附性分子——DOPA 32 2-4-3 含DOPA分子黏附性材料及應用 33 2-4-4 仿淡菜黏附分子——多巴胺 38 2-5 雙電性表面改質 41 2-5-1 雙電性官能基及其結構 41 2-5-2 雙電性材料應用於表面 46 2-5-3 雙電性材料與非離子性材料的差異 47 2-5-4 雙電性CB與SB材料的差異 49 2-5-5 帶電基團間結構 51 2-6 研究目的與動機 53 第3章 實驗藥品與儀器 56 3-1 實驗藥品 56 3-2 實驗儀器 59 3-3 實驗儀器原理 60 3-3-1 光學式靜態接觸角測量儀 60 3-3-2 高解析核磁共振光譜儀 61 3-3-3 高解析電子能譜儀 62 3-3-4 真空濺鍍機 63 3-3-5 超高解析度冷場發射掃描式電子顯微鏡及能量散佈分析儀器 64 第4章 實驗流程與步驟 66 4-1 實驗流程圖 66 4-2 合成流程圖 66 4-3 合成及純化步驟 68 4-3-1 TFADA合成 68 4-3-2 TFADAAC合成 68 4-3-3 DAAC合成 68 4-3-4 tBBP合成 69 4-3-5 Dt合成 69 4-3-6 QDt合成 70 4-3-7 CB-DA合成 71 4-3-8 DMDAAC合成 71 4-3-9 QDAAC合成 72 4-3-10 QDA合成 72 4-4 鈦基材製備 73 4-5 PH調製組裝法 74 4-6 血小板吸附實驗 75 第5章 結果與討論 77 5-1 合成部分——1H NMR圖譜 77 5-1-1 TFADA 77 5-1-2 TFADAAC 78 5-1-3 DAAC 79 5-1-4 tBBP 79 5-1-5 Dt及副產物Dt2 80 5-1-6 Dt-HCl 81 5-1-7 Dtd 81 5-1-8 QDt 82 5-1-9 CB-DA 83 5-1-10 DMDAAC 84 5-1-11 QDAAC 85 5-1-12 QDA 86 5-2 合成部分——反應路徑 87 5-2-1 保護基團之使用 87 5-2-2 後續烷化策略 88 5-2-3 去除碘離子與去保護 90 5-2-4 後續純化與策略 90 第6章 結論 92 參考文獻 94 附錄 114

    參考文獻
    1. Vanderleyden, E.; Mullens, S.; Luyten, J.; Dubruel, P., Implantable (bio) polymer coated titanium scaffolds: a review. Current pharmaceutical design 2012, 18 (18), 2576-2590.
    2. Cheng, G.; Zhang, Z.; Chen, S.; Bryers, J. D.; Jiang, S., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28 (29), 4192-4199.
    3. Thurston, T. E.; Andrades, P.; Phillips, R. A.; Ray, P. D.; Grant III, J. H., Safety Profile of Wire Osteosynthesis in Craniosynostosis Surgery. Journal of Craniofacial Surgery 2009, 20 (4), 1154-1158.
    4. Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K., Implant biomaterials: A comprehensive review. World Journal of Clinical Cases: WJCC 2015, 3 (1), 52.
    5. Bauer, S.; Schmuki, P.; von der Mark, K.; Park, J., Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Progress in Materials Science 2013, 58 (3), 261-326.
    6. Williams, D., An Introduction to Medical and Dental Materials, Concise Encyclopedia of Medical & Dental Materials, D. Williams, Ed. Pergamon Press and The MIT Press: 1990.
    7. Black, J.; Hastings, G., Handbook of biomaterial properties. Springer Science & Business Media: 2013.
    8. Liu, X.; Chu, P. K.; Ding, C., Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports 2004, 47 (3), 49-121.
    9. Albrektsson, T.; Johansson, C., Osteoinduction, osteoconduction and osseointegration. European Spine Journal 2001, 10 (2), S96-S101.
    10. Ehrenfest, D. M. D.; Coelho, P. G.; Kang, B.-S.; Sul, Y.-T.; Albrektsson, T., Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in biotechnology 2010, 28 (4), 198-206.
    11. Le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y., Surface treatments of titanium dental implants for rapid osseointegration. Dental materials 2007, 23 (7), 844-854.
    12. Moe, K. S.; Weisman, R. A., Resorbable fixation in facial plastic and head and neck reconstructive surgery: an initial report on polylactic acid implants. The Laryngoscope 2001, 111 (10), 1697-1701.
    13. Huang, H.-H.; Chiu, Y.-H.; Lee, T.-H.; Wu, S.-C.; Yang, H.-W.; Su, K.-H.; Hsu, C.-C., Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 2003, 24 (20), 3585-3592.
    14. Brunette, D. M.; Tengvall, P.; Textor, M.; Thomsen, P., Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Springer Science & Business Media: 2012.
    15. Phillips, P.; Sampson, E.; Yang, Q.; Antonelli, P.; Progulske-Fox, A.; Schultz, G., Bacterial biofilms in wounds. Wound Healing Southern Africa 2009, 1 (2), 10-12.
    16. Fux, C.; Costerton, J.; Stewart, P.; Stoodley, P., Survival strategies of infectious biofilms. Trends in microbiology 2005, 13 (1), 34-40.
    17. Davies, D., Understanding biofilm resistance to antibacterial agents. Nature reviews Drug discovery 2003, 2 (2), 114-122.
    18. Horswill, A. R.; Stoodley, P.; Stewart, P. S.; Parsek, M. R., The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Analytical and bioanalytical chemistry 2007, 387 (2), 371-380.
    19. Flemming, H.-C.; Neu, T. R.; Wozniak, D. J., The EPS matrix: the “house of biofilm cells”. Journal of bacteriology 2007, 189 (22), 7945-7947.
    20. Wang, H.; Yin, T.; Ge, S.; Zhang, Q.; Dong, Q.; Lei, D.; Sun, D.; Wang, G., Biofunctionalization of titanium surface with multilayer films modified by heparin‐VEGF‐fibronectin complex to improve endothelial cell proliferation and blood compatibility. Journal of Biomedical Materials Research Part A 2013, 101 (2), 413-420.
    21. Courtney, J.; Lamba, N.; Sundaram, S.; Forbes, C., Biomaterials for blood-contacting applications. Biomaterials 1994, 15 (10), 737-744.
    22. Carpenter, A. W.; Schoenfisch, M. H., Nitric oxide release: Part II. Therapeutic applications. Chemical Society Reviews 2012, 41 (10), 3742-3752.
    23. Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglič, A., Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine 2014, 111, 111.
    24. Gnatenko, D. V.; Perrotta, P. L.; Bahou, W. F., Proteomic approaches to dissect platelet function: half the story. Blood 2006, 108 (13), 3983-3991. DOI: 10.1182/blood-2006-06-026518.
    25. Ko, T.-M.; Cooper, S. L., Surface characterization and platelet adhesion studies of plasma-sulfonated polyethylene. In Frontiers of Polymers and Advanced Materials, Springer: 1994; pp 439-452.
    26. Shen, C.-H.; Lin, J.-C., Surface characterization and platelet compatibility evaluation of binary mixed self-assembled monolayers containing novel sulfonic acid terminated alkanethiol. Colloids and Surfaces B: Biointerfaces 2010, 79 (1), 156-163.
    27. Sedó, J.; Saiz‐Poseu, J.; Busqué, F.; Ruiz‐Molina, D., Catechol‐Based Biomimetic Functional Materials. Adv. Mater. 2013, 25 (5), 653-701.
    28. Burzio, L. A.; Waite, J. H., Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry 2000, 39 (36), 11147-11153.
    29. Petrone, L.; Kumar, A.; Sutanto, C. N.; Patil, N. J.; Kannan, S.; Palaniappan, A.; Amini, S.; Zappone, B.; Verma, C.; Miserez, A., Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nature communications 2015, 6, 8737.
    30. Yu, J.; Wei, W.; Danner, E.; Ashley, R. K.; Israelachvili, J. N.; Waite, J. H., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature chemical biology 2011, 7 (9), 588.
    31. Maier, G. P.; Rapp, M. V.; Waite, J. H.; Israelachvili, J. N.; Butler, A., Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 2015, 349 (6248), 628-632.
    32. Lim, C.; Huang, J.; Kim, S.; Lee, H.; Zeng, H.; Hwang, D. S., Nanomechanics of poly (catecholamine) coatings in aqueous solutions. Angewandte Chemie International Edition 2016, 55 (10), 3342-3346.
    33. Hwang, D. S.; Waite, J. H., Three intrinsically unstructured mussel adhesive proteins, mfp‐1, mfp‐2, and mfp‐3: Analysis by circular dichroism. Protein Science 2012, 21 (11), 1689-1695.
    34. Ye, Q.; Zhou, F.; Liu, W., Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews 2011, 40 (7), 4244-4258.
    35. Liu, R.; Fu, X.; Wang, C.; Dawson, G., Dopamine Surface Modification of Trititanate Nanotubes: Proposed In‐Situ Structure Models. Chemistry–A European Journal 2016, 22 (17), 6071-6074.
    36. Barrett, D. G.; Sileika, T. S.; Messersmith, P. B., Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings. Chemical Communications 2014, 50 (55), 7265-7268.
    37. Ball, V., Physicochemical perspective on “polydopamine” and “poly (catecholamine)” films for their applications in biomaterial coatings. Biointerphases 2014, 9 (3), 030801.
    38. Yang, Y.; Qi, P.; Ding, Y.; Maitz, M. F.; Yang, Z.; Tu, Q.; Xiong, K.; Leng, Y.; Huang, N., A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization. Journal of Materials Chemistry B 2015, 3 (1), 72-81.
    39. Kim, S.; Faghihnejad, A.; Lee, Y.; Jho, Y.; Zeng, H.; Hwang, D. S., Cation–π interaction in DOPA-deficient mussel adhesive protein mfp-1. Journal of Materials Chemistry B 2015, 3 (5), 738-743.
    40. Lu, Q.; Hwang, D. S.; Liu, Y.; Zeng, H., Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus. Biomaterials 2012, 33 (6), 1903-1911.
    41. Lu, Q.; Oh, D. X.; Lee, Y.; Jho, Y.; Hwang, D. S.; Zeng, H., Nanomechanics of cation–π interactions in aqueous solution. Angewandte Chemie 2013, 125 (14), 4036-4040.
    42. Olofsson, K.; Granskog, V.; Cai, Y.; Hult, A.; Malkoch, M., Activated dopamine derivatives as primers for adhesive-patch fixation of bone fractures. RSC Advances 2016, 6 (31), 26398-26405.
    43. Zürcher, S.; Wäckerlin, D.; Bethuel, Y.; Malisova, B.; Textor, M.; Tosatti, S.; Gademann, K., Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. Journal of the American Chemical Society 2006, 128 (4), 1064-1065.
    44. Huang, C.-J.; Wang, L.-C.; Shyue, J.-J.; Chang, Y.-C., Developing antifouling biointerfaces based on bioinspired zwitterionic dopamine through pH-modulated assembly. Langmuir 2014, 30 (42), 12638-12646.
    45. Malisova, B.; Tosatti, S.; Textor, M.; Gademann, K.; Zürcher, S., Poly (ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. Langmuir 2010, 26 (6), 4018-4026.
    46. Zhu, Y.; Sundaram, H. S.; Liu, S.; Zhang, L.; Xu, X.; Yu, Q.; Xu, J.; Jiang, S., A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles. Biomacromolecules 2014, 15 (5), 1845-1851.
    47. Cheng, G.; Li, G.; Xue, H.; Chen, S.; Bryers, J. D.; Jiang, S., Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 2009, 30 (28), 5234-5240.
    48. Wan, Q.; Mao, L.; Liu, M.; Wang, K.; Zeng, G.; Xu, D.; Huang, H.; Zhang, X.; Wei, Y., Towards development of a versatile and efficient strategy for fabrication of GO based polymer nanocomposites. Polymer Chemistry 2015, 6 (40), 7211-7218.
    49. Khalil, F.; Franzmann, E.; Ramcke, J.; Dakischew, O.; Lips, K. S.; Reinhardt, A.; Heisig, P.; Maison, W., Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: Applications on TiO2 and stainless steel. Colloids and Surfaces B: Biointerfaces 2014, 117, 185-192.
    50. Lee, H.; Scherer, N. F.; Messersmith, P. B., Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences 2006, 103 (35), 12999-13003.
    51. Sun, Q.; Li, H.; Xian, C.; Yang, Y.; Song, Y.; Cong, P., Mimetic marine antifouling films based on fluorine-containing polymethacrylates. Applied Surface Science 2015, 344, 17-26.
    52. Krogsgaard, M.; Hansen, M. R.; Birkedal, H., Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. Journal of Materials Chemistry B 2014, 2 (47), 8292-8297.
    53. Ma, L.; Cheng, C.; He, C.; Nie, C.; Deng, J.; Sun, S.; Zhao, C., Substrate-independent robust and heparin-mimetic hydrogel thin film coating via combined LbL self-assembly and mussel-inspired post-cross-linking. ACS applied materials & interfaces 2015, 7 (47), 26050-26062.
    54. Park, J. P.; Choi, M.-J.; Kim, S. H.; Lee, S. H.; Lee, H., Preparation of sticky Escherichia coli through surface display of an adhesive catecholamine moiety. Appl. Environ. Microbiol. 2014, 80 (1), 43-53.
    55. Park, J. P.; Do, M.; Jin, H.-E.; Lee, S.-W.; Lee, H., M13 bacteriophage displaying DOPA on surfaces: fabrication of various nanostructured inorganic materials without time-consuming screening processes. ACS applied materials & interfaces 2014, 6 (21), 18653-18660.
    56. Della Vecchia, N. F.; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; d'Ischia, M., Building‐block diversity in polydopamine underpins a multifunctional eumelanin‐type platform tunable through a quinone control point. Advanced Functional Materials 2013, 23 (10), 1331-1340.
    57. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Elucidating the structure of poly (dopamine). Langmuir 2012, 28 (15), 6428-6435.
    58. Ding, Y.; Weng, L.-T.; Yang, M.; Yang, Z.; Lu, X.; Huang, N.; Leng, Y., Insights into the aggregation/deposition and structure of a polydopamine film. Langmuir 2014, 30 (41), 12258-12269.
    59. Dang, Y.; Xing, C.-M.; Quan, M.; Wang, Y.-B.; Zhang, S.-P.; Shi, S.-Q.; Gong, Y.-K., Substrate independent coating formation and anti-biofouling performance improvement of mussel inspired polydopamine. Journal of materials chemistry B 2015, 3 (20), 4181-4190.
    60. Luo, R.; Liu, Y.; Yao, H.; Jiang, L.; Wang, J.; Weng, Y.; Zhao, A.; Huang, N., Copper-incorporated collagen/catechol film for in situ generation of nitric oxide. ACS Biomaterials Science & Engineering 2015, 1 (9), 771-779.
    61. Saiz‐Poseu, J.; Sedó, J.; García, B.; Benaiges, C.; Parella, T.; Alibés, R.; Hernando, J.; Busqué, F.; Ruiz‐Molina, D., Versatile nanostructured materials via direct reaction of functionalized catechols. Advanced Materials 2013, 25 (14), 2066-2070.
    62. Zhang, X.; Ren, P.-F.; Yang, H.-C.; Wan, L.-S.; Xu, Z.-K., Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Applied Surface Science 2016, 360, 291-297.
    63. Xiong, K.; Qi, P.; Yang, Y.; Li, X.; Qiu, H.; Li, X.; Shen, R.; Tu, Q.; Yang, Z.; Huang, N., Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups. RSC Advances 2016, 6 (21), 17188-17195.
    64. Zhang, S.; Jiang, Z.; Wang, X.; Yang, C.; Shi, J., Facile method to prepare microcapsules inspired by polyphenol chemistry for efficient enzyme immobilization. ACS applied materials & interfaces 2015, 7 (35), 19570-19578.
    65. Xu, G.; Pranantyo, D.; Zhang, B.; Xu, L.; Neoh, K.-G.; Kang, E.-T., Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings. RSC Advances 2016, 6 (18), 14809-14818.
    66. Krogsgaard, M.; Andersen, A.; Birkedal, H., Gels and threads: mussel-inspired one-pot route to advanced responsive materials. Chemical Communications 2014, 50 (87), 13278-13281.
    67. Kim, S.; Kim, D. S.; Kang, S. M., Reversible Layer‐by‐Layer Deposition on Solid Substrates Inspired by Mussel Byssus Cuticle. Chemistry–An Asian Journal 2014, 9 (1), 63-66.
    68. Hong, S.; Yeom, J.; Song, I. T.; Kang, S. M.; Lee, H.; Lee, H., Pyrogallol 2‐Aminoethane: A Plant Flavonoid‐Inspired Molecule for Material‐Independent Surface Chemistry. Advanced Materials Interfaces 2014, 1 (4), 1400113.
    69. Wu, J.; Cai, C.; Zhou, Z.; Qian, H.; Zha, F.; Guo, J.; Feng, B.; He, T.; Zhao, N.; Xu, J., Low-cost mussel inspired poly (catechol/polyamine) coating with superior anti-corrosion capability on copper. Journal of colloid and interface science 2016, 463, 214-221.
    70. Qiu, W.-Z.; Yang, H.-C.; Wan, L.-S.; Xu, Z.-K., Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. Journal of Materials Chemistry A 2015, 3 (27), 14438-14444.
    71. Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J., Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. ACS applied materials & interfaces 2014, 6 (8), 5602-5608.
    72. Maerten, C. m.; Garnier, T.; Lupattelli, P.; Chau, N. T. T.; Schaaf, P.; Jierry, L.; Boulmedais, F., Morphogen electrochemically triggered self-construction of polymeric films based on mussel-inspired chemistry. Langmuir 2015, 31 (49), 13385-13393.
    73. Wang, Y.; Wang, J.; Gao, M.; Zhang, X., An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. Journal of Materials Chemistry B 2015, 3 (44), 8711-8716.
    74. Lu, D.; Zhang, Y.; Li, Y.; Wang, H.; Shen, Z.; Wei, Q.; Lei, Z., The synthesis and tissue adhesiveness of temperature-sensitive hyperbranched poly (amino acid) s with functional side groups. Polymer Chemistry 2016, 7 (10), 1963-1970.
    75. Kim, S.; Huang, J.; Lee, Y.; Dutta, S.; Yoo, H. Y.; Jung, Y. M.; Jho, Y.; Zeng, H.; Hwang, D. S., Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proceedings of the National Academy of Sciences 2016, 113 (7), E847-E853.
    76. d'Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T., Chemical and structural diversity in eumelanins: unexplored bio‐optoelectronic materials. Angewandte Chemie International Edition 2009, 48 (22), 3914-3921.
    77. Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y., Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 2011, 27 (23), 14180-14187.
    78. Ye, Q.; Wang, X.; Hu, H.; Wang, D.; Li, S.; Zhou, F., Polyelectrolyte Brush Templated Multiple Loading of Pd Nanoparticles onto TiO2 Nanowires via Regenerative Counterion Exchange− Reduction. The Journal of Physical Chemistry C 2009, 113 (18), 7677-7683.
    79. Liu, Y.; Ai, K.; Lu, L., Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical reviews 2014, 114 (9), 5057-5115.
    80. Sui, Y.; Gao, X.; Wang, Z.; Gao, C., Antifouling and antibacterial improvement of surface-functionalized poly (vinylidene fluoride) membrane prepared via dihydroxyphenylalanine-initiated atom transfer radical graft polymerizations. Journal of membrane science 2012, 394, 107-119.
    81. Nguyen, A.; Azari, S.; Zou, L., Coating zwitterionic amino acid l-DOPA to increase fouling resistance of forward osmosis membrane. Desalination 2013, 312, 82-87.
    82. Azari, S.; Zou, L.; Cornelissen, E.; Mukai, Y., Facile fouling resistant surface modification of microfiltration cellulose acetate membranes by using amino acid L-DOPA. Water Science and Technology 2013, 68 (4), 901-908.
    83. Wei, H.; Ren, J.; Han, B.; Xu, L.; Han, L.; Jia, L., Stability of polydopamine and poly (DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids and Surfaces B: Biointerfaces 2013, 110, 22-28.
    84. Azari, S.; Zou, L., Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. Journal of membrane science 2012, 401, 68-75.
    85. Hong, S.; Kim, J.; Na, Y. S.; Park, J.; Kim, S.; Singha, K.; Im, G. I.; Han, D. K.; Kim, W. J.; Lee, H., Poly (norepinephrine): ultrasmooth material‐independent surface chemistry and nanodepot for nitric oxide. Angewandte Chemie International Edition 2013, 52 (35), 9187-9191.
    86. Kang, S. M.; Park, S.; Kim, D.; Park, S. Y.; Ruoff, R. S.; Lee, H., Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel‐Inspired Chemistry. Advanced Functional Materials 2011, 21 (1), 108-112.
    87. Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H., Mussel-inspired adhesives and coatings. Annual review of materials research 2011, 41, 99-132.
    88. Waite, J. H., Adhesion a la moule. Integrative and comparative biology 2002, 42 (6), 1172-1180.
    89. Moskovits, M., Surface selection rules. The Journal of Chemical Physics 1982, 77 (9), 4408-4416.
    90. Silverman, H. G.; Roberto, F. F., Understanding marine mussel adhesion. Marine biotechnology 2007, 9 (6), 661-681.
    91. Deming, T. J., Mussel byssus and biomolecular materials. Current opinion in chemical biology 1999, 3 (1), 100-105.
    92. Waite, J. H., The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 1990, 97 (1), 19-29.
    93. Waite, J. H.; Tanzer, M. L., Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 1981, 212 (4498), 1038-1040.
    94. Rzepecki, L. M.; Hansen, K. M.; Waite, J. H., Characterization of a cystine-rich polyphenolic protein family from the blue mussel Mytilus edulis L. The Biological Bulletin 1992, 183 (1), 123-137.
    95. Papov, V. V.; Diamond, T. V.; Biemann, K.; Waite, J. H., Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. Journal of Biological Chemistry 1995, 270 (34), 20183-20192.
    96. Lin, Q.; Gourdon, D.; Sun, C.; Holten-Andersen, N.; Anderson, T. H.; Waite, J. H.; Israelachvili, J. N., Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proceedings of the National Academy of Sciences 2007, 104 (10), 3782-3786.
    97. Cha, H. J.; Hwang, D. S.; Lim, S., Development of bioadhesives from marine mussels. Biotechnology Journal: Healthcare Nutrition Technology 2008, 3 (5), 631-638.
    98. Suci, P. A.; Geesey, G. G., Comparison of adsorption behavior of two Mytilus edulis foot proteins on three surfaces. Colloids and Surfaces B: Biointerfaces 2001, 22 (2), 159-168.
    99. Suci, P. A.; Geesey, G. G., Influence of sodium periodate and tyrosinase on binding of alginate to adlayers of Mytilus edulis foot protein 1. Journal of colloid and interface science 2000, 230 (2), 340-348.
    100. Höök, F.; Kasemo, B.; Nylander, T.; Fant, C.; Sott, K.; Elwing, H., Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Analytical chemistry 2001, 73 (24), 5796-5804.
    101. Burkett, J. R.; Wojtas, J. L.; Cloud, J. L.; Wilker, J. J., A method for measuring the adhesion strength of marine mussels. The Journal of Adhesion 2009, 85 (9), 601-615.
    102. Lee, B. P.; Chao, C.-Y.; Nunalee, F. N.; Motan, E.; Shull, K. R.; Messersmith, P. B., Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules 2006, 39 (5), 1740-1748.
    103. Yu, M.; Hwang, J.; Deming, T. J., Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins. Journal of the American Chemical Society 1999, 121 (24), 5825-5826.
    104. Yu, M.; Deming, T. J., Synthetic polypeptide mimics of marine adhesives. Macromolecules 1998, 31 (15), 4739-4745.
    105. Pierpont, C. G.; Buchanan, R. M., Transition metal complexes of o-benzoquinone, o-semiquinone, and catecholate ligands. Coordination chemistry reviews 1981, 38 (1), 45-87.
    106. McBride, M. B.; Wesselink, L. G., Chemisorption of catechol on gibbsite, boehmite, and noncrystalline alumina surfaces. Environmental science & technology 1988, 22 (6), 703-708.
    107. Kummert, R.; Stumm, W., The surface complexation of organic acids on hydrous γ-Al2O3. Journal of Colloid and Interface Science 1980, 75 (2), 373-385.
    108. Hagerman, A. E.; Butler, L. G., The specificity of proanthocyanidin-protein interactions. Journal of Biological Chemistry 1981, 256 (9), 4494-4497.
    109. Schaefer, J.; Kramer, K. J.; Garbow, J. R.; Jacob, G. S.; Stejskal, E. O.; Hopkins, T. L.; Speirs, R. D., Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Science 1987, 235 (4793), 1200-1204.
    110. Duine, J. A.; Jongejan, J. A., Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor. Annual review of biochemistry 1989, 58 (1), 403-426.
    111. Hwang, D. S.; Gim, Y.; Yoo, H. J.; Cha, H. J., Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials 2007, 28 (24), 3560-3568.
    112. Black, K. C.; Liu, Z.; Messersmith, P. B., Catechol redox induced formation of metal core− polymer shell nanoparticles. Chemistry of Materials 2011, 23 (5), 1130-1135.
    113. Gao, C.; Li, G.; Xue, H.; Yang, W.; Zhang, F.; Jiang, S., Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials 2010, 31 (7), 1486-1492.
    114. Fan, X.; Lin, L.; Dalsin, J. L.; Messersmith, P. B., Biomimetic anchor for surface-initiated polymerization from metal substrates. Journal of the American Chemical Society 2005, 127 (45), 15843-15847.
    115. Wach, J. Y.; Malisova, B.; Bonazzi, S.; Tosatti, S.; Textor, M.; Zürcher, S.; Gademann, K., Protein‐Resistant Surfaces through Mild Dopamine Surface Functionalization. Chemistry–A European Journal 2008, 14 (34), 10579-10584.
    116. Lee, H.; Lee, K. D.; Pyo, K. B.; Park, S. Y.; Lee, H., Catechol-grafted poly (ethylene glycol) for PEGylation on versatile substrates. Langmuir 2010, 26 (6), 3790-3793.
    117. Lee, H.; Lee, B. P.; Messersmith, P. B., A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448 (7151), 338.
    118. Huang, K.; Lee, B. P.; Ingram, D. R.; Messersmith, P. B., Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromolecules 2002, 3 (2), 397-406.
    119. Hvidt, S.; Joergensen, E. B.; Brown, W.; Schillen, K., Micellization and gelation of aqueous solutions of a triblock copolymer studied by rheological techniques and scanning calorimetry. The Journal of Physical Chemistry 1994, 98 (47), 12320-12328.
    120. Lee, B. P.; Huang, K.; Nunalee, F. N.; Shull, K. R.; Messersmith, P. B., Synthesis of 3, 4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels. Journal of Biomaterials Science, Polymer Edition 2004, 15 (4), 449-464.
    121. Amstad, E.; Gillich, T.; Bilecka, I.; Textor, M.; Reimhult, E., Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano letters 2009, 9 (12), 4042-4048.
    122. Pande, S.; Jana, S.; Sinha, A. K.; Sarkar, S.; Basu, M.; Pradhan, M.; Pal, A.; Chowdhury, J.; Pal, T., Dopamine molecules on Aucore− Agshell bimetallic nanocolloids: Fourier Transform Infrared, Raman, and Surface-Enhanced Raman Spectroscopy study aided by density functional theory. The Journal of Physical Chemistry C 2009, 113 (17), 6989-7002.
    123. Weinhold, M.; Soubatch, S.; Temirov, R.; Rohlfing, M.; Jastorff, B.; Tautz, F.; Doose, C., Structure and bonding of the multifunctional amino acid L-DOPA on Au (110). The Journal of Physical Chemistry B 2006, 110 (47), 23756-23769.
    124. Akemi Ooka, A.; Garrell, R. L., Surface‐enhanced Raman spectroscopy of DOPA‐containing peptides related to adhesive protein of marine mussel, Mytilus edulis. Biopolymers: Original Research on Biomolecules 2000, 57 (2), 92-102.
    125. Li, S.-C.; Wang, J.-g.; Jacobson, P.; Gong, X.-Q.; Selloni, A.; Diebold, U., Correlation between bonding geometry and band gap states at organic− inorganic interfaces: catechol on rutile TiO2 (110). Journal of the American Chemical Society 2009, 131 (3), 980-984.
    126. Moser, J.; Punchihewa, S.; Infelta, P. P.; Graetzel, M., Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 1991, 7 (12), 3012-3018.
    127. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-inspired surface chemistry for multifunctional coatings. science 2007, 318 (5849), 426-430.
    128. Łuczak, T., Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochimica Acta 2008, 53 (19), 5725-5731.
    129. Sileika, T. S.; Kim, H.-D.; Maniak, P.; Messersmith, P. B., Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS applied materials & interfaces 2011, 3 (12), 4602-4610.
    130. Ku, S. H.; Ryu, J.; Hong, S. K.; Lee, H.; Park, C. B., General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 2010, 31 (9), 2535-2541.
    131. Xi, Z.-Y.; Xu, Y.-Y.; Zhu, L.-P.; Wang, Y.; Zhu, B.-K., A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly (dopamine). Journal of Membrane Science 2009, 327 (1-2), 244-253.
    132. Chen, J.; Chen, X.; Yin, X.; Ma, J.; Jiang, Z., Bioinspired fabrication of composite pervaporation membranes with high permeation flux and structural stability. Journal of Membrane Science 2009, 344 (1-2), 136-143.
    133. Li, B.; Liu, W.; Jiang, Z.; Dong, X.; Wang, B.; Zhong, Y., Ultrathin and stable active layer of dense composite membrane enabled by poly (dopamine). Langmuir 2009, 25 (13), 7368-7374.
    134. Chapman, R. G.; Ostuni, E.; Takayama, S.; Hol毫升in, R. E.; Yan, L.; Whitesides, G. M., Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society 2000, 122 (34), 8303-8304.
    135. Konradi, R.; Pidhatika, B.; Mühlebach, A.; Textor, M., Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (3), 613-616.
    136. Bauer, M.; Lautenschlaeger, C.; Kempe, K.; Tauhardt, L.; Schubert, U. S.; Fischer, D., Poly (2‐ethyl‐2‐oxazoline) as Alternative for the Stealth Polymer Poly (ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility. Macromolecular bioscience 2012, 12 (7), 986-998.
    137. Chen, S.; Jiang, S., An new avenue to nonfouling materials. Advanced Materials 2008, 20 (2), 335-338.
    138. Lowe, A. B.; McCormick, C. L., Synthesis and solution properties of zwitterionic polymers. Chemical reviews 2002, 102 (11), 4177-4190.
    139. Jiang, S.; Cao, Z., Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials 2010, 22 (9), 920-932.
    140. Schlenoff, J. B., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 2014, 30 (32), 9625-9636.
    141. Yang, W.; Xue, H.; Li, W.; Zhang, J.; Jiang, S., Pursuing “zero” protein adsorption of poly (carboxybetaine) from undiluted blood serum and plasma. Langmuir 2009, 25 (19), 11911-11916.
    142. Zhang, L.; Cao, Z.; Bai, T.; Carr, L.; Ella-Menye, J.-R.; Irvin, C.; Ratner, B. D.; Jiang, S., Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature biotechnology 2013, 31 (6), 553.
    143. Keefe, A. J.; Jiang, S., Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature chemistry 2012, 4 (1), 59.
    144. Shao, Q.; White, A. D.; Jiang, S., Difference of carboxybetaine and oligo (ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study. The Journal of Physical Chemistry B 2013, 118 (1), 189-194.
    145. Yancey, P. H., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology 2005, 208 (15), 2819-2830.
    146. Bretscher, M. S.; Raff, M. C., Mammalian plasma membranes. Nature 1975, 258 (5530), 43.
    147. Alfrey Jr, T.; Morawetz, H.; Fitzgerald, E. B.; Fuoss, R. M., Synthetic electrical analog of Proteins1. Journal of the American Chemical Society 1950, 72 (4), 1864-1864.
    148. Tarannum, N.; Singh, M., Advances in synthesis and applications of sulfo and carbo analogues of polybetaines: a review. Reviews in Advanced Sciences and Engineering 2013, 2 (2), 90-111.
    149. Salamone, J.; Rice, W., Polyampholytes. Encyclopedia of Polymer Science and Technology 1985, 11, 514-530.
    150. Kudaibergenov, S.; Jaeger, W.; Laschewsky, A., Polymeric betaines: synthesis, characterization, and application. In Supramolecular polymers polymeric betains oligomers, Springer: 2006; pp 157-224.
    151. Singh, P. K.; Singh, V. K.; Singh, M., Zwitterionic polyelectrolytes: a review. e-Polymers 2007, 7 (1).
    152. Hamaide, T.; Germanaud, L.; Perchec, P. L., New polymeric phosphonato‐, phosphinato‐and carboxybetaïnes, 1. Syntheses and characterization by IR spectroscopy. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1986, 187 (5), 1097-1107.
    153. Al‐Hamouz, O. C. S.; Ali, S. A., pH‐responsive polyphosphonates using butler's cyclopolymerization. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (17), 3580-3591.
    154. Ostermayer, B.; Albrecht, O.; Vogt, W., Polymerizable lipid analogues of diacetylenic phosphonic acids. Synthesis, spreading behaviour and polymerization at the gas-water interface. Chemistry and physics of lipids 1986, 41 (3-4), 265-291.
    155. Buchweitz, K., Synthese und Charakterisierung neuartiger Polysulfobetaine. 2001.
    156. Pujol-Fortin, M. L.; Galin, J. C., Poly (ammonium alkoxydicyanoethenolates) as new hydrophobic and highly dipolar poly (zwitterions). 1. Synthesis. Macromolecules 1991, 24 (16), 4523-4530.
    157. Grassl, B.; Meurer, B.; Scheer, M.; Galin, J. C., Segmented poly (tetramethylene oxide) zwitterionomers and their homologous ionenes. 2. Phase separation through DSC and solid state 1H-NMR spectroscopy. Macromolecules 1997, 30 (2), 236-245.
    158. Bieglé, A.; Mathis, A.; Galin, J. C., Towards highly functionalized and semi‐rigid polyzwitterions, 1. Poly (dizwitterionic methacrylates): synthesis and specific properties. Macromolecular Chemistry and Physics 1999, 200 (6), 1393-1406.
    159. Bieglé, A.; Mathis, A.; Galin, J. C., Towards highly functionalized and semi‐rigid polyzwitterions, 2. Poly (zwitterionic isocyanides): synthesis and specific properties. Macromolecular Chemistry and Physics 2000, 201 (1), 113-125.
    160. Xue, C.; Cai, F.; Liu, H., Ultrasensitive Fluorescent Responses of Water‐Soluble, Zwitterionic, Boronic Acid‐Bearing, Regioregular Head‐to‐Tail Polythiophene to Biological Species. Chemistry–A European Journal 2008, 14 (5), 1648-1653.
    161. Yoshizawa, M.; Hirao, M.; Ito-Akita, K.; Ohno, H., Ion conduction in zwitterionic-type molten salts and their polymers. Journal of Materials Chemistry 2001, 11 (4), 1057-1062.
    162. Galin, J., Polyzwitterions. CRC Press: Boca Raton, FL, USA: 1996; Vol. 9, pp 7189-7201.
    163. Weers, J. G.; Rathman, J. F.; Axe, F. U.; Crichlow, C. A.; Foland, L. D.; Scheuing, D. R.; Wiersema, R. J.; Zielske, A. G., Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir 1991, 7 (5), 854-867.
    164. Chen, Y.; Wang, H.; Wang, J., Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations. The Journal of Physical Chemistry B 2014, 118 (17), 4630-4635.
    165. Wiederkehr, N.; Kalyanasundaram, K.; Graetzel, M.; Viscardi, G.; Savarino, P.; Barni, E., Micellization properties of zwitterionic surfactants derived from nicotinic acid in aqueous solutions. Langmuir 1991, 7 (1), 23-29.
    166. Izumrudov, V. A.; Domashenko, N. I.; Zhiryakova, M. V.; Davydova, O. V., Interpolyelectrolyte reactions in solutions of polycarboxybetaines, 2: Influence of alkyl spacer in the betaine moieties on complexing with polyanions. The Journal of Physical Chemistry B 2005, 109 (37), 17391-17399.
    167. Bohrisch, J.; Schimmel, T.; Engelhardt, H.; Jaeger, W., Charge interaction of synthetic polycarboxybetaines in bulk and solution. Macromolecules 2002, 35 (10), 4143-4149.
    168. Schwarz, S.; Jaeger, W.; Bratskaya, S.; Bohrisch, J.; Schimmel, T.; Mende, M.; Oelmann, M.; Boyko, V., Formation of polyelectrolyte complexes in a polycarboxybetaine/weak polyanion system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 276 (1-3), 65-71.
    169. Laughlin, R. G., Fundamentals of the zwitterionic hydrophilic group. Langmuir 1991, 7 (5), 842-847.
    170. Laughlin, R. G., HLB, from a thermodynamic perspective. J Soc Cosmet Chem 1981, 32, 371-392.
    171. Herrmann, K., Micellar properties of some zwitterionic surfactants. Journal of Colloid and Interface Science 1966, 22 (4), 352-359.
    172. Tarannum, N.; Singh, M., Synthesis and characterization of zwitterionic organogels based on Schiff base chemistry. Journal of applied polymer science 2010, 118 (5), 2821-2832.
    173. Perlmann, G. E.; Katchalski, E., Conformation of poly-L-methionine and some of its derivatives in solution. Journal of the American Chemical Society 1962, 84 (3), 452-457.
    174. Pluzhnov, S.; Lents, R.; Topchiev, D.; Kabanov, V., Synthesis of new ionic monomers fromα-bromomethacrylic acid. Russian Chemical Bulletin 1982, 31 (1), 176-177.
    175. Nilsson, P. G.; Lindman, B.; Laughlin, R. G., The upper consolute boundary in zwitterionic surfactant-water systems. The Journal of Physical Chemistry 1984, 88 (25), 6357-6362.
    176. Avci, D.; Mathias, L. J., Synthesis and photopolymerizations of phosphate-containing acrylate/(di) methacrylate monomers from 3-(acryloyloxy)-2-hydroxypropyl methacrylate. Polymer Bulletin 2005, 54 (1-2), 11-19.
    177. Bonte, N.; Laschewsky, A., Zwitterionic polymers with carbobetaine moieties. Polymer 1996, 37 (10), 2011-2019.
    178. Wielema, T. A.; Engberts, J. B., Zwitterionic polymers—I. Synthesis of a novel series of poly (vinylsulphobetaines). Effect of structure of polymer on solubility in water. European polymer journal 1987, 23 (12), 947-950.
    179. Wielema, T. A.; Engberts, J. B., Zwitterionic polymers—II. Synthesis of a novel series of poly (vinylbetaines) and the effect of the polymeric structure on the solubility behaviour in water. European Polymer Journal 1990, 26 (4), 415-421.
    180. Nakaya, T.; Li, Y.-J., Phospholipid polymers. Progress in Polymer Science 1999, 24 (1), 143-181.
    181. Barboiu, V.; Streba, E.; Luca, C.; Radu, I.; Grigoriu, G. E., Reactions on polymers with amine groups. V. Addition of pyridine and imidazole groups with acetylenecarboxylic acids. Journal of Polymer Science Part A: Polymer Chemistry 1998, 36 (10), 1615-1623.
    182. Chevalier, Y.; Storet, Y.; Pourchet, S.; Le Perchec, P., Tensioactive properties of zwitterionic carboxybetaine amphiphiles. Langmuir 1991, 7 (5), 848-853.
    183. Avci, D.; Lemopulo, K.; Mathias, L. J., Cyclocopolymerization of allyl‐acrylate quaternary ammonium salts with diallyldimethylammonium chloride. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39 (5), 640-649.
    184. Avci, D.; Mathias, L. J., Synthesis and cyclopolymerization of novel allyl‐acrylate quaternary ammonium salts. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (7), 901-907.
    185. Ishihara, K.; Fukumoto, K.; Iwasaki, Y.; Nakabayashi, N., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials 1999, 20 (17), 1545-1551.
    186. Chen, S.; Zheng, J.; Li, L.; Jiang, S., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society 2005, 127 (41), 14473-14478.
    187. He, Y.; Hower, J.; Chen, S.; Bernards, M. T.; Chang, Y.; Jiang, S., Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 2008, 24 (18), 10358-10364.
    188. Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S., Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008, 9 (5), 1357-1361.
    189. Tsai, W.-B.; Shi, Q.; Grunkemeier, J.; McFarland, C.; Horbett, T., Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. Journal of Biomaterials Science, Polymer Edition 2004, 15 (7), 817-840.
    190. Vaisocherova, H.; Yang, W.; Zhang, Z.; Cao, Z.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S., Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical chemistry 2008, 80 (20), 7894-7901.
    191. Brault, N. D.; Sundaram, H. S.; Huang, C.-J.; Li, Y.; Yu, Q.; Jiang, S., Two-layer architecture using atom transfer radical polymerization for enhanced sensing and detection in complex media. Biomacromolecules 2012, 13 (12), 4049-4056.
    192. Mi, L.; Jiang, S., Integrated antimicrobial and nonfouling zwitterionic polymers. Angewandte Chemie International Edition 2014, 53 (7), 1746-1754.
    193. Cao, Z.; Jiang, S., Super-hydrophilic zwitterionic poly (carboxybetaine) and amphiphilic non-ionic poly (ethylene glycol) for stealth nanoparticles. Nano Today 2012, 7 (5), 404-413.
    194. Yu, G.; Liu, J.; Zhou, J., Mesoscopic coarse-grained simulations of lysozyme adsorption. The Journal of Physical Chemistry B 2014, 118 (17), 4451-4460.
    195. Xie, Y.; Liu, M.; Zhou, J., Molecular dynamics simulations of peptide adsorption on self-assembled monolayers. Applied Surface Science 2012, 258 (20), 8153-8159.
    196. Wei, Q.; Becherer, T.; Angioletti‐Uberti, S.; Dzubiella, J.; Wischke, C.; Neffe, A. T.; Lendlein, A.; Ballauff, M.; Haag, R., Protein interactions with polymer coatings and biomaterials. Angewandte Chemie International Edition 2014, 53 (31), 8004-8031.
    197. Zheng, J.; Li, L.; Tsao, H.-K.; Sheng, Y.-J.; Chen, S.; Jiang, S., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophysical journal 2005, 89 (1), 158-166.
    198. Shao, Q.; He, Y.; White, A. D.; Jiang, S., Difference in hydration between carboxybetaine and sulfobetaine. The Journal of Physical Chemistry B 2010, 114 (49), 16625-16631.
    199. Kondo, T.; Nomura, K.; Gemmei-Ide, M.; Kitano, H.; Noguchi, H.; Uosaki, K.; Saruwatari, Y., Structure of water at zwitterionic copolymer film–liquid water interfaces as examined by the sum frequency generation method. Colloids and Surfaces B: Biointerfaces 2014, 113, 361-367.
    200. Kane, R. S.; Deschatelets, P.; Whitesides, G. M., Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003, 19 (6), 2388-2391.
    201. Bennion, B. J.; Daggett, V., Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. Proceedings of the National Academy of Sciences 2004, 101 (17), 6433-6438.
    202. Shao, Q.; He, Y.; White, A. D.; Jiang, S., Different effects of zwitterion and ethylene glycol on proteins. The Journal of chemical physics 2012, 136 (22), 06B607.
    203. Dyson, H. J.; Wright, P. E.; Scheraga, H. A., The role of hydrophobic interactions in initiation and propagation of protein folding. Proceedings of the National Academy of Sciences 2006, 103 (35), 13057-13061.
    204. Cozzini, P.; Fornabaio, M.; Marabotti, A.; Abraham, D. J.; Kellogg, G. E.; Mozzarelli, A., Free energy of ligand binding to protein: evaluation of the contribution of water molecules by computational methods. Current medicinal chemistry 2004, 11 (23), 3093-3118.
    205. Van Meer, G.; Voelker, D. R.; Feigenson, G. W., Membrane lipids: where they are and how they behave. Nature reviews Molecular cell biology 2008, 9 (2), 112.
    206. Veronese, F. M.; Mero, A., The impact of PEGylation on biological therapies. BioDrugs 2008, 22 (5), 315-329.
    207. Jayaraman, S.; Gantz, D. L.; Gursky, O., Poly (ethylene glycol)-induced fusion and destabilization of human plasma high-density lipoproteins. Biochemistry 2004, 43 (18), 5520-5531.
    208. Yang, W.; Xue, H.; Carr, L. R.; Wang, J.; Jiang, S., Zwitterionic poly (carboxybetaine) hydrogels for glucose biosensors in complex media. Biosensors and Bioelectronics 2011, 26 (5), 2454-2459.
    209. Yang, W.; Liu, S.; Bai, T.; Keefe, A. J.; Zhang, L.; Ella-Menye, J.-R.; Li, Y.; Jiang, S., Poly (carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production. Nano Today 2014, 9 (1), 10-16.
    210. Shao, Q.; He, Y.; Jiang, S., Molecular dynamics simulation study of ion interactions with zwitterions. The Journal of Physical Chemistry B 2011, 115 (25), 8358-8363.
    211. Schulz, D.; Peiffer, D.; Agarwal, P.; Larabee, J.; Kaladas, J.; Soni, L.; Handwerker, B.; Garner, R., Phase behaviour and solution properties of sulphobetaine polymers. Polymer 1986, 27 (11), 1734-1742.
    212. Kumar, R.; Fredrickson, G. H., Theory of polyzwitterion conformations. The Journal of Chemical Physics 2009, 131 (10), 104901.
    213. Azzaroni, O.; Brown, A. A.; Huck, W. T., UCST wetting transitions of polyzwitterionic brushes driven by self‐association. Angewandte Chemie International Edition 2006, 45 (11), 1770-1774.
    214. Shao, Q.; Mi, L.; Han, X.; Bai, T.; Liu, S.; Li, Y.; Jiang, S., Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses. The journal of physical chemistry B 2014, 118 (24), 6956-6962.
    215. Fennell, C. J.; Bizjak, A.; Vlachy, V.; Dill, K. A., Ion pairing in molecular simulations of aqueous alkali halide solutions. The Journal of Physical Chemistry B 2009, 113 (19), 6782-6791.
    216. Shao, Q.; Jiang, S., Effect of carbon spacer length on zwitterionic carboxybetaines. The Journal of Physical Chemistry B 2013, 117 (5), 1357-1366.
    217. Mi, L.; Giarmarco, M. M.; Shao, Q.; Jiang, S., Divalent cation-mediated polysaccharide interactions with zwitterionic surfaces. Biomaterials 2012, 33 (7), 2001-2006.
    218. He, Y.; Tsao, H.-K.; Jiang, S., Improved mechanical properties of zwitterionic hydrogels with hydroxyl groups. The Journal of Physical Chemistry B 2012, 116 (19), 5766-5770.
    219. Wei, H.; Insin, N.; Lee, J.; Han, H.-S.; Cordero, J. M.; Liu, W.; Bawendi, M. G., Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano letters 2011, 12 (1), 22-25.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE