研究生: |
莊家胤 Chuang, Chia-Yin |
---|---|
論文名稱: |
漫射型奈米柱反射鏡應用於覆晶型發光二極體增加光輸出效率 Light Extraction Improvement of Flip-Chip Light-Emitting-Diode Using Diffused Nanorod Reflector |
指導教授: |
李清庭
Lee, Ching-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 漫射型反射鏡 、覆晶型發光二極體 、氮化鎵發光二極體 、氧化鋅奈米柱陣列 |
外文關鍵詞: | Diffused ZnO nanorod reflector, Flip-chip light emitting diodes, GaN-basedlight-emitting-diodes, ZnO nanorod arrays |
相關次數: | 點閱:119 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從前人的文獻中了解到金屬反射鏡與氧化鋅奈米柱陣列皆為一有效改善發光二極體之光輸出功率的方法。此研究提出之漫射型奈米柱反射鏡並應用於傳統覆晶型發光二極體元件上改善光萃取效率,而漫射型奈米柱反射鏡是將高反射率的鋁金屬沉積在氧化鋅奈米柱陣列之上所形成。由於此漫射型奈米柱反射鏡的粗糙化金屬表面與低折射係數的氧化鋅奈米柱陣列使得此新結構應用於覆晶型發光二極體的光輸出功率與光強度分佈的元件特性獲得改善。相較於傳統覆晶型發光二極體,本研究提出之奈米柱長度為500奈米之漫射型奈米柱反射鏡應用於覆晶型發光二極體在光輸出功率上有56.6%的提升。
From previous references, the metal reflector and the ZnO nanorod array were useful method to enhance light output power of light-emitting-diodes (LEDs). In this work, the diffused ZnO nanorod reflectors were designed to improve the light extraction of conventional flip-chip light-emitting-diodes (FCLEDs). By depositing the high reflective Al metal on the ZnO nanorod arrays, the diffused ZnO nanorod reflectors were fabricated. As the result of the roughened high reflective Al metal and the light scattering in the low refractive ZnO nanorod array, the light output power and the light distribution of the conventional FCLEDs were improved by using the diffused ZnO nanorod reflectors. Compared with the conventional FCLEDs, the increase percentage of 56.6% of the light output power was enhanced for the FCLEDs with diffused 500-nm-long ZnO nanorod reflector.
[1]S. Dalui, C. C. Lin, H. Y. Lee, C. H. Chao and C. T. Lee, “Light output enhancement of GaN-based light-emitting diodes using ZnO nanorod arrays produced by aqueous solution growth technique”, IEEE Photon. Technol. Lett., vol. 22, issue 16, pp. 1220-1222 (2010).
[2]Z. G. Ju, S. T. Tan, Z. H. Zhang, Y. Ji, and Z. Kyaw, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer”, Appl. Phys. Lett., vol. 100, issue 12, pp. 123503-1-123503-3 (2012).
[3]K. You, H. Jiang, D. Li, X. Sun, S. D. Kim, C. Cho, Y. G. Roh, He. Jeon, and Y. S. Park, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors”, Appl. Phys. Lett., vol. 100, issue 12, pp. 121109-1-121109-3 (2012).
[4]H. Y. Lee, X. Y. Huang, and C. T. Lee, “Light output enhancement of GaN-based roughened light-emitting diodes using bias-assisted photoelectrochemical etching method”, J. Electrochem. Soc., vol. 155, no. 10, pp. H707-H709 (2008).
[5]H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes”, IEEE Photon. Technol. Lett., vol. 20, issue 24, pp. 2096-2098 (2008).
[6]M. R. Krames, M. O. Holcomb, G. E. Höfler, C. C. Coman, and E. I. Chen, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency”, Appl. Phys. Lett., vol. 75, issue 16, pp. 2365-2367 (1999).
[7]D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-based LEDs with phosphoric acid etched undercut sidewalls”, IEEE Photon. Technol. Lett., vol. 21, issue 8, pp. 510-512 (2009).
[8]C. C. Lin and C. T. Lee, “GaN-based resonant-cavity light-emitting diodes with top and bottom dielectric distributed bragg reflectors”, IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1291-1293 (2010).
[9]J. K. Kim, T. Gessmann, H. Luo, and E. F. Schubert, “GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector”, Appl. Phys. Lett., vol. 84, issue 22, pp. 4508-4510 (2004).
[10]J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, and E. F. Schubert, “Internal high-reflectivity omni-directional reflectors”, Appl. Phys. Lett., vol. 87, issue 3, pp. 031111-1-031111-3 (2005).
[11]J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, and M. J. Ludowise, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett., vol. 78, issue 22, pp. 3379-3381 (2001).
[12]R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, and C. E. Lee, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography”, Appl. Phys. Lett., vol. 86, issue 22, pp. 221101-1-221101-3 (2005).
[13]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, and S. P. DenBaars, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., vol. 84, issue 6, pp. 855-857 (2004).
[14]J. K. Kim, T. Gessmann, and E. F. Schubert, “Integrated shadow mask method for patterning small molecule organic semiconductors”, Appl. Phys. Lett., vol. 88, issue 1, pp. 013501-1-013501 (2006).
[15]E. F. Schubert, “Light Emitting Diodes”, Cambridge University Press, New York (2006).
[16]郭浩中、賴芳儀、郭守義,“LED原理與應用”,五南圖書出版公司,台北市,頁碼92-95 (2009).
[17]D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, “Light emitting diodes with ZnO current spreading layers deposited from a low temperature aqueous solution”, Appl. Phys. Exp., vol. 2, no. 4, pp. 042101-1-042101-3 ( 2009).
[18]M. K. Lee, C. L. Ho, and P. C. Chen, “Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods”, IEEE Photon. Technol. Lett., vol. 20, issue 4, pp. 252-254 (2008).
[19]K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution”, Appl. Phys. Lett., vol. 94, issue 7, pp. 071118-1-071118-3 (2009).
[20]M. Yang, G. Yin, Z. Huang, X. Liao, Y. Kang, and Y. Yao, “Well-aligned ZnO rod arrays grown on glass substrate from aqueous solution”, Appl. Surf. Sci., vol. 254, no. 10, pp. 2917-2921 (2008).
[21]Chih-Chien Lin and Ching-Ting Lee, “Enhanced light extraction of GaN-based light-emitting diodes using nanorod arrays”, Electrochem. Solid State Lett., vol. 13, issue 8, pp. H278-H280 (2010).
[22]H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer”, Appl. Phys. Lett., vol. 86, issue 24, pp. 243505-1-243505-3 (2005).