簡易檢索 / 詳目顯示

研究生: 石琦堅
Shi, Chi-Chien
論文名稱: 運用閃電資料分析2018年嘉義機場午後雷暴發展條件
The analysis of afternoon thunderstorm development by utilizing 2018 lightening data at the ChiaYi Airport
指導教授: 饒瑞鈞
Rau, Ruey-Juin
共同指導教授: 宋偉國
Song, Wei-Guo
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 83
中文關鍵詞: 臺灣全方位閃電網WRF雲中放電雲對地放電
外文關鍵詞: WeatherRisk Explore Inc, WRF(Weather Research And Forecasting Model), lightening In Cloud (IC), lightening Cloud to Ground (CG)
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷暴系統一直是飛航安全所重視的天氣現象,然而台灣地區雷暴好發於午後熱對流發展之時段,此類午後對流個案發生時間短,且發生地區相當局部性,對預報人員為相當大挑戰。雷暴豪大雨發生前,雲中閃電(IC)次數經常出現躍升現象,本文使用臺灣全方位閃電網雷電偵測網之資料,嘗試分析IC躍升與嘉義地區雷暴相關性。結果顯示嘉義機場附近區域在午後對流發生時,雲中閃電(IC)與雲對地閃電(CG)比例為10.98:1。IC發生頻率高,可做為嘉義機場午後對流系統之預警指標。2018年閃電資料顯示CG發生發生前,IC均有有突增情形,可作為CG預報前兆。IC在2018年嘉義機場附近分布顯示,IC發生區域以機場東側為主,惟8月在嘉義機場西南面有一好發區域,此為海風形成的西南風遇到嘉義東側山脈而利於對流發展,顯示地形對對流發生有顯著貢獻。嘉義機場午後對流個案以7月最高,8月次之,其後依序為6月、9月、5月及4月。本文使用中央氣象局、美國國家大氣與海洋總署(National Oceanic and Atmospheric Administration,簡稱NOAA)網格點資料分析2018年台灣嘉義雷暴發生月份之大尺度環境,2018年7月綜觀環境分析顯示太平洋高壓北抬,臺灣南側海面伴隨顯西南氣流,但仍受限於太平洋高壓勢力,臺灣地區風速弱,局部環流與地形關係仍是決定午後對流發展關鍵因子。氣象數值模式WRF(WEATHER RESEARCH AND FORECASTING MODEL)進行雷暴模擬分析,模式模擬結果顯示,無論7月21日西北風或7月24日西南風造成對流效應,都反映地形因素,當西南風或西北風遇到嘉義東邊山區時,因地形舉升氣流而造成對流降雨,驗證嘉義地形對雷暴形成與發展有重要角色。

    The thunderstorm system is the most severe weather phenomenon relating to aviation safety. However, the thunderstorm system intends to happen in the afternoon. This type of convective case in the afternoon takes a short time of occurred and at local region. Therefore, predicting the correct time and location of a thunderstorm is a challenge . Before the appearance of heavy rainfall by thunderstorm, the number of lightning in cloud (IC) often rises. This reasearc uses the data from Taiwan's all-round lightning network lightning detection network to try to analyze the correlation between IC jumps and thunderstorms in Chiayi. These results indicate that the proportion of lightening In Cloud (IC) and Cloud to Ground (CG) is 10.98: 1 in region of Chia-Yi airport. IC has a high frequency of occurrence and can be used as an early warning indicator for the convection system at Chiayi Airport in the afternoon. Lightning data in 2018 showed that there was a sudden increase in IC before the occurrence of CG, which can be used as a precursor to CG forecast. The distribution of ICs near Chiayi Airport in 2018 showed that IC occurred mainly on the east side of the airport. However, there was a good occurrence area in the southwest of Chiayi Airport in August. This is because the southwest wind formed by the sea breeze meets the mountains on the east side of Chiayi and is beneficial to convective development. Showing that the terrain has a significant contribution to the occurrence of convection. The results indicate that in 2018 year the highest effect of afternoon convective system occurred over Chia-Yi Airport are in July, then August, follows by June, September, May and April. This article uses grid data from the Central Meteorological Administration and the National Oceanic and Atmospheric Administration (NOAA) to analyze the large-scale environment in the month of thunderstorms in Chiayi, Taiwan in 2018. In 2018 July, the high pressure in Pacific Ocean turned northbound and the southwesterly flow impacted the sea surface in southern Taiwan. However, due to the effect of high pressure over Pacific Ocean and the weak wind speed in Taiwan area. The key factors to the development of afternoon convection are local circulation and terrain effect. The meteorological numerical model WRF (Weather Research and Forcasting Model:WRF) conducts thunderstorm simulation analysis. The model simulation results show that no matter the convection effect caused by the northwest wind on July 21 or the southwest wind on July 24, it reflects the topographical factors. When encountering the mountainous area in the east of Chiayi, convective rainfall caused by topographical updrafts proved that Chiayi's topography plays an important role in the formation and development of thunderstorms.

    摘要i Abstractii 目錄vi 表目錄vii 圖目錄viii 第一章 緒論1 1.1 研究動機1 1.1.1 雷暴系統對飛航安全之影響1 1.1.2 雷暴系統觀測及預報的難度1 1.1.3 台灣閃電偵測系統應用於雷暴的發展1 1.2 文獻回顧4 1.3 研究目的5 1.4 論文架構5 第二章 研究方法7 2.1 資料來源介紹7 2.2 個案篩選7 2.3 模式簡介7 第三章 台灣地區雷暴資料統計分析10 3.1 全台每季閃電分析10 3.2 全台降雨量與雷暴相關性分析16 3.3 大尺度環境對降雨量與雷暴之相關性分析18 第四章 嘉義區雷暴特徵分析28 4.1嘉義地理位置與雷雨關係29 4.2嘉義環流分布32 4.3嘉義與阿里山環流與雷暴關係34 第五章 2018年嘉義區雷暴與閃電資料分析38 5.1 2018年7-9月雷暴發展環境分析38 5.2 嘉義地區午後雷暴系統伴隨之閃電時空分布特性43 5.3 雲中閃電與雲對地閃電與關聯分析48 第六章 2018年嘉義區雷暴個案模擬59 6.1 2018年7月21日雷暴個案模擬(PT)59 6.2 2018年7月24日雷暴個案(ST)67 6.3 2018年7月21日雷暴個案(PT)與24日雷暴個案(ST)比較75 第七章 結論與未來展望77 參考文獻79

    中文部分
    陳泰然、周鴻祺、廖佩娟、楊進賢(2009),“暖季弱綜觀強迫下中北臺灣午後熱對流的氣候特徵”,大氣科學,37卷,69-108。
    林品芳、張保亮、周仲島(2012),“弱綜觀環境下臺灣午後熱對流特徵及其客觀預報”,大氣科學,40卷,77-108。
    戴志輝、林博雄、王尹懋、王安翔(2013),“午後對流個案之全閃電分析”,102年中央氣象局天氣分析與預報研討會。
    齊祿祥(2013),“臺灣地區暖季午後雷陣雨之氣候特徵與概念模式分析”,102年中央氣象局天氣分析與預報研討會。
    葉南慶、呂冠毅(2015),“衛星資料應用於夏季午後熱對流之初步分析”,104年中央氣象局天氣分析與預報研討會。
    陳奕翰、劉清煌(2017),“暖季弱綜觀環境下臺北盆地午後雷陣雨觀測及模式資料分析”,106年中央氣象局天氣分析與預報研討會。
    中央氣象局,氣候監測網頁,http://www.cwb.gov.tw/V7/climate/climate_info/statistics/ statistics_1_2.html。
    空軍氣象聯隊(2014),臺南基地雷暴(雨)之統計分析。1992-2011年氣候統計分析,26-36。
    吉崎正憲、張泉湧譯(2009),豪雨與豪雪之氣象學。國立編譯館與五南圖書出版公司,88-173。
    宋偉國與朱宗良(2014),台灣南部地區午後對流系統個案研究,中央氣象局天氣分析預報研討會。
    徐森雄等(2006),臺灣西南部地區之降雨分佈特性。Crop, Environment & Bioinformatics 3,9-19。
    復興航空GE222飛航事故調查進度報告. 飛航安全調查委員會. 2014-08-01 [2014-08-01].
    林熹閔與郭鴻基(1996),1994年南臺灣夏季午後對流之研究。大氣科學,24,249-280
    戴志輝、王尹懋、楊明仁、林博雄(2016),雲中閃電預警對流性降雨初探。大氣科學,45,1,43-55.
    陳柏榮與洪景山(2015),臺灣電力公司閃電資料特徵分析。大氣科學,43,285-300。
    戴志輝、林得恩及賴世運(2008),臺灣北部午後對流閃電與綜觀氣流風向之關係。大氣科學,36,179-196。
    戴志輝、王尹懋、王安翔及林博雄(2015),雲中閃電資料應用於雷暴即時預警之研究。大氣科學,43,115-132。
    張雅惠 黃婉如(2016),2016 年臺灣梅雨季午後對流降雨分析。大氣科學,44,4,289-303
    周仲島、高聿正、修榮光、鍾吉俊、李宗融、郭鴻基(2016),臺北都會區豪雨型午後雷暴的觀測特徵與預報挑戰: 2015 年 6 月 14 日個案研究。大氣科學,44,1,57-81.
    陳慶昌、嚴明鉦、王世宇(2007),台灣與東亞之夏季季風降雨變化,大氣科學,35,4,305-352.
    英文部分
    Akaeda, K., J. Reisner, and D. Parsons,(1995),The role of mesoscale and topographically induced circulations initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123, 1720-1739.
    Ashley, W. S., Strader, S., Dziubla, D. C., and A. Haberlie,(2015), Driving blind: Weather-related vision hazards and fatal motor vehicle crashes. Bulletin of the American Meteorological Society, 96, 755–778.
    Atkins, N. T., and R. M. Wakimoto, (1997), Influence of the synoptic-scale flow on seabreezes observed during CAPE. Mon. Wea. Rev., 125, 2112–2130.
    Baker, S. P., & Lamb, M. W.,(1989), Hazards of mountain flying: Crashes in the Colorado rockies. Aviation, Space, and Environmental Medicine, 66, 522–527.
    Black, A. W., & Mote, T. L.,(2015), Characteristics of winter-precipitation-related transportation fatalities in the United States. Weather, Climate, and Society, 7, 133–145. doi:10.1175/WCAS-D-14-00011.1
    Blanchard, D. O., and R. E. López.,(1985), Spatial patterns of convection in south Florida. Mon. Wea. Rev., 113, 1282–1299.
    Capobianco, G., & Lee, M. D. ,(2001), The role of weather in general aviation accidents: An analysis of causes, contributing factors and issues. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 45, 190–194.
    Changnon, S. A., (1993), Relations between thunderstorms and cloud-to-ground lightning in the United States. J. Appl. Meteor., 32, 88-105.
    Chen, C.-S. and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
    Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen,(2007), Statistics of heavy rainfall occurrences in Taiwan. Wea. Forecasting, 22, 981–1002.
    Chen, T. C., M. C. Yen, J. C. Hsieh, and R. W. Arritt, (1999), Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull. Amer. Meteor. Soc., 80, 2299-2312.
    Doswell, C. A. ,H. Brooks, and R. Maddox, (1996), Flash flood forecasting: an ingredient-based methodology. Wea. Forecasting, 11,560-581.
    Grabowski, J. G., Curriero, F. C., Baker, S. P., & Li, G.,(2002), Exploratory spatial analysis of pilot fatality rates in general aviation crashes using geographic information systems. American Journal of Epidemiology, 155, 398–405.
    Hsu, P.-C., J.-Y. Lee, and K.-J. Ha, ( 2016), Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 1403-1412. DOI: 10.1002/joc. 4433.
    Johnson, R. H., and J. F. Bresch, (1991), Diagnosed Characteristics of Precipitation Systems over Taiwan during the May–June 1987 TAMEX. Mon. Wea. Rev., 119, 2540-2557. Jou, B. J.-D., 1994: Mountain-originated mesoscale precipitation system in northern Taiwan: A case study 21 June 1991. TAO, 5, 169-197.
    Karstens, C. D., Correia, J., Jr., LaDue, D. S., Wolfe, J., Meyer, T. C., Harrison, D. R., et al. ,(2018), Development of a human-machine mix for forecasting severe convective events. Weather and Forecasting, 33, 715–737.
    Karstens, C. D., et al. ,(2015), Evaluation of a probabilistic forecasting methodology for severe convective weather in the 2014 hazardous weather testbed. Weather Forecasting, 30, 1551–1570.
    Kearney, P. J., & Li, G. ,(2000), Geographic variations in crash risk of general aviation and air taxis. Aviation, Space, and Environmental Medicine, 71, 19–21.
    Lin, P. F., P. L. Chang, B. J.-D. Jou, J. Wilson, and R. Roberts ,(2012), Objective prediction of warm season afternoon thunderstorm in northern Taiwan using a fuzzy logic approach. Wea. Forecasting, 27, 1178-1197.
    Lin, Y.-L. ,D. J. Han, W. Hamilton, and C.-Y. Huang ,(1999), Orography Influence on a drifting cyclone. J. Atmos. Sci., 56,534-562.
    Ruppert Jr. J. H., R. H. Johnson, and A. K. Rowe, (2013), Diurnal circulations and rainfall in Taiwan during SoWMEX/TiMREX (2008). Mon. Wea. Rev., 141, 3851-3872.
    Ungs, T. J. (1995), Explanatory factors for the geographic distribution of US civil aviation mortality. Aviation, Space, and Environmental Medicine, 66, 522–527.
    Weglarz, (2001), Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16,633-660.
    WRF model,http://wrf-model.org/index.php.
    Xu, W., E. J. Zipser, Y. L. Chen, C. Liu, Y. C. Liou, W. C. Lee, B. J.-D. Jou, (2012), An orographyassociated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555-2574.
    Yim, S.-Y., B. Wang, W. Xing, and M.-M. Lu ,(2015), Prediction of Meiyu rainfall in Taiwan by multilead physical-empirical models. Clim. Dyn., 44, 3033-3042.

    無法下載圖示 校內:2026-10-12公開
    校外:2026-10-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE