簡易檢索 / 詳目顯示

研究生: 謝易達
Hsieh, Yi-Da
論文名稱: 氧化鎢添加鉻複合鍍膜之機械性質和磨潤性能研究
Study on Mechanical and Tribological Performance of Tungsten Oxide Enhanced with Chromium Composite Coatings
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 151
中文關鍵詞: 非平衡磁控濺鍍磨潤性熱處理
外文關鍵詞: unbalanced magnetron sputtering, wear lubrication, heat treatment
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用封閉式非平衡磁控濺鍍,配合在中介層和表面鍍膜之間採漸進層的方式來提高鍍膜的性質。研究的鍍層有兩類,第一類為W-Cr系列,改變鍍膜表層的W/Cr比例;第二類為CrN系列,其是在前一項鍍膜之前置入一CrN層。主要目的在探討鍍膜經熱處理前後之磨潤性、機械性質、切削性能及破壞機構。實驗主要分為三部份:第一部份探討兩類鍍膜的機械性質與磨潤性;第二部份探討鍍膜經不同的溫度(400 ℃、500 ℃)熱處理一小時後的機械性質及其磨潤性;選用性質較佳的鍍層進行第三部分的乾車削及印刷電路板微鑚針試驗。
    實驗結果知,W-Cr系列鍍層於Cr含量達30 %時,鍍層擁有較高的微硬度Hk0.01 2282、奈米硬度19.5GPa(load為10mN)以及較好抗磨耗性。當W-Cr30%鍍層經400 ℃、500 ℃一小時熱處理後,硬度及抗磨耗性質能繼續維持在較佳的狀態。由實際的切削實驗結果得知,W-Cr30% 鍍層能有效降低車刀及鑚針磨耗量,可降低車刀刀腹磨耗量51 %及微鑚針之刀角磨耗量48 %及刀腹磨耗量29 %。第二類鍍層相對於第一類鍍層並無顯著差異,在W-Cr鍍層前再置入CrN層無意義。

    The study used the closed unbalanced magnetron sputtering with progressive approach to improve the coating layer properties. The research’s coatings have two kinds, first kind are the W-Cr series with different W/Cr percent on the coatings’ surface; second kind are the CrN series ,it is the first kind added with a CrN inter layer. The main purpose is to discuss the coatings’ mechanical properties, cutting and destruction of institutions before and after the heat treatment. Experiment was divided into three parts: The first part is to research the mechanical properties and wear lubrication of the two kind coatings; the second part is to discuss the mechanical properties and wear lubrication of the films in different temperature(400 ℃、500 ℃)with one hour’s heat treatment. Then, we choose the coating which has the best charaterization to carry out the third part: dry turning and the printed circuit board micro-needle test.
    The results reveal that the highest nano hardness of 19.5 GPa and the micro hardness of Hk0.012282 have the best wear resistance were performed by the W-Cr coatings with the chromium of at.30 % . When W-Cr30% coating after 400 ℃, 500 ℃ high temperature oxidation for one hour, hardness and wear resistance properties still continue to maintain a better state. Experimental results from actual cutting was informed that the W-Cr30% coating can effectively reduce the turning tool and needle wear, and we found it can reduce turning tool’s flank wear 51% and micro-drilling knife wear 48% and flank wear 51%.

    口試合格證明 I 摘要 II Abstract III 誌謝 IV 總目錄 V 表目錄 VII 圖目錄 VIII 附錄 X 第一章 緒論 1 第二章 理論探討與文獻回顧 4 2-1 薄膜成形 4 2-1-1 薄膜成形技術 4 2-1-2 薄膜成形技術的種類 4 2-1-3 成形技術與用途 6 2-2 磁控濺鍍理論 7 2-2-1 直流濺鍍原理 7 2-2-2 磁控濺鍍目的 8 2-3 鍍膜性質 9 2-3-1氧化鉻和氮化鉻鍍膜性質 9 2-3-2 鎢及氧化鎢性質 10 第三章 實驗方法與步驟 12 3-1 實驗目的 12 3-2 實驗流程 12 3-3 實驗方法與規劃 13 3-3-1 鍍層參數與鍍膜安排 13 3-3-2 實驗材料 14 3-3-3 成份分析 14 3-3-4 結構分析 15 3-3-5 硬度實驗 16 3-3-6 附著性實驗 16 3-3-7 磨耗實驗 17 3-3-8 熱處理實驗 17 3-3-9 乾車削實驗 17 3-3-10 PCB微鑚削實驗 18 3-3-11 表面、斷面和磨耗型態分析 18 3-4 實驗設備 19 第四章 鍍層實驗結果與討論 21 4-1 設計鍍層變化對鍍膜的影響 21 4-1-1 鍍膜基本性質 21 4-1-1-1 鍍膜微結構 21 4-1-1-2 鍍膜表面之粗糙度分析及斷面SEM觀察 22 4-1-1-3 鍍膜膜厚及成份分析 23 4-1-1-4 鍍膜硬度 23 4-1-2 鍍膜的附著性 23 4-1-3 鍍膜耐磨實驗 24 4-1-4 小結 24 4-2 熱處理對鍍膜的影響 25 4-2-1 鍍膜基本性質 25 4-2-1-1 鍍膜微結構 25 4-2-1-2 鍍膜之表面及斷面SEM觀察 26 4-2-1-3 鍍膜硬度 26 4-2-2 鍍膜的附著性 27 4-2-3 鍍膜的磨耗性 27 4-3 乾車削實驗 29 4-4 PCB微鑚削實驗 29 第五章 結論與未來展望 31 5-1 結論 31 5-2 未來展望 32 第六章 參考文獻 33 表目錄 第三章 表3-1 Deposition parameters for W-Cr series of coatings 42 表3-2 Deposition parameters for CrN series of coatings 43 表3-3 Chemical composition(wt.%)of JIS SKH51 disk(substrate) 44 表3-4 Pin-On-Disk wear test parameters 44 表3-5 Heat treatment detail for W-Cr(0、10~30%) 、W+CrN and W-10%+CrN coatings 44 第四章 表4-1 Thickness of W-Cr(0、10~30%)、W+CrN and W-Cr10%+CrN 45 表4-2 Elemental composition of W-Cr(0、10~30%)、W+CrN and W-Cr10%+CrN coating’s GDOS(at. %) 45 表4-3 Knoop hardness values of W-Cr(0、10~30%)、W+CrN and W-Cr10%+CrN coatings 45 表4-4 Nano-Indentation hardness values of W-Cr(0、10~30%)、W+CrN and W-Cr10%+CrN coatings (100~130nm) 45 表4-5 Indentation fracture level of W-Cr(0、10~30%)、W+CrN 、W-Cr10%+CrN and after heat treatment coatings 46 表4-6 Knoop hardness values of W-Cr(0、10~30%)、W+CrN 、W-Cr10%+CrN coatings before after heat treatment 46 表4-7 Nano-Indentation hardness values of W-Cr(0、10~30%)、W+CrN 、W-Cr10%+CrN coatings after heat treatment (100~130nm) 46 圖目錄 第二章 圖2-1 薄膜形成技術種類 47 圖2-2 典型直流鍍膜系統構造示意圖 48 圖2-3 輝光放電示意圖 48 圖2-4 傳統磁控與非平衡磁控濺鍍示意圖 49 第三章 圖3-1 實驗流程 50 圖3-2 鍍膜結構安排示意圖 51 圖3-3 KD-550U封閉式非平衡磁控濺鍍系統(主腔體) 52 圖3-4 KD-550U封閉式非平衡磁控濺鍍系統(控制系統) 52 圖3-5 封閉式非平衡磁控濺鍍系統腔體內部構造示意圖 53 圖3-6 The LBI Nanoindenter (UNAT-M) 53 圖3-7 壓痕破裂型態示意圖 54 圖3-8 Pin-On-Disk磨耗測試機台 54 圖3-9 Pin-On-Disk磨耗測試機台示意圖 55 圖3-10 車刀磨耗型態及切削性能評估準則示意圖 55 圖3-11 PCB微鑽孔實驗示意圖 56 圖3-12 FR-4八層銅箔之各層疊構圖 57 圖3-13 微鑽針磨耗評估準則 57 第四章 圖4-1 W-Cr系列鍍層XRD分析 58 圖4-2 CrN系列鍍層XRD分析 58 圖4-3 鍍層之表面粗糙度比較圖 59 圖4-4 鍍層SEM表面及斷面示意圖 61 圖4-5 鍍膜之元素含量圖(GDOS分析) 62 圖4-6 鉻含量與W-Cr系列以及CrN系列鍍膜硬度的關係 62 圖4-7 奈米硬度圖 63 圖4-8 W-Cr系列及CrN系列鍍層壓痕示意圖及結果 64 圖4-9 W-Cr系列及CrN系列鍍層Pin-On-Disk磨耗的結果 65 圖4-10 NIT(%)對磨耗的影響 65 圖4-11 We、Wt示意圖 66 圖4-12 經熱處理後的W-Cr10%鍍層XRD圖(有WO3) 67 圖4-13 經熱處理後的W-Cr30%鍍層XRD圖(無WO3) 67 圖4-14 經熱處理後的CrN系列XRD圖 68 圖4-15 經熱處理後的W-Cr10%鍍膜表層歐傑電子分析成分圖 69 圖4-16 經熱處理後的W-Cr30%鍍膜表層歐傑電子分析成分圖 70 圖4-17 W-Cr10%-400度表層SEM-mapping圖 71 圖4-18 W-Cr10%-500度表層SEM-mapping圖 72 圖4-19 W-Cr30%-400度表層SEM-mapping圖 73 圖4-20 W-Cr30%-500度表層SEM-mapping圖 74 圖4-21 W熱處理 SEM表面及斷面示意圖 75 圖4-22 W-Cr10%熱處理 SEM表面及斷面示意圖 76 圖4-23 W-Cr15%熱處理 SEM表面及斷面示意圖 77 圖4-24 W-Cr20%熱處理 SEM表面及斷面示意圖 78 圖4-25 W-Cr25%熱處理 SEM表面及斷面示意圖 79 圖4-26 W-Cr30%熱處理 SEM表面及斷面示意圖 80 圖4-27 W+CrN熱處理 SEM表面及斷面示意圖 81 圖4-28 W-Cr10%+CrN熱處理 SEM表面及斷面示意圖 82 圖4-29 經熱處理前後之W-Cr系列及添加CrN系列鍍膜微硬度圖 83 圖4-30 經熱處理後的W-Cr系列及CrN系列奈米硬度圖 83 圖4-31 經熱處理後W-Cr系列、CrN系列鍍層壓痕示意圖及結果 85 圖4-32 經熱處理前後的W-Cr系列及CrN系列彈性係數 86 圖4-33 經處理處理前後W-Cr系列及CrN系列Pin-On-Disk磨耗結果示意圖 86 圖4-34 NIT(%)對經熱處理前後的W-Cr系列及CrN系列之磨耗影 87 圖4-35 NIT(%)對無熱處理的W-Cr系列及CrN系列之磨耗影響 87 圖4-36 NIT(%)對經400度熱處理後的W-Cr系列及CrN系列之 磨耗影響 88 圖4-37 NIT(%)對經500度熱處理後的W-Cr系列及CrN系列之 磨耗影響 88 圖4-38 乾車削實驗與不同鍍層比較 89 圖4-39 經熱處理前後之W-Cr10%系列及W-Cr30%系列鍍膜車刀的乾車削實驗磨耗比較圖 89 圖4-40 鑚削實驗結果示意圖(與學長比較) 90 圖4-41 經熱處理前後之W-Cr30%系列與W-Cr10%系列鍍膜鑽針的鑚削結果比較圖 90 附錄 附錄一 W-Cr系列、CrN系列和W-Cr30%熱處理鍍層的GDOS成分分析 91 附錄二 第一階段 磨痕之EDS成分分析 96 附錄三 第二階段 熱處理後磨痕之EDS成分分析 102 附錄四 乾車削實驗之EDS成分分析 113 附錄五 微鑽針磨耗實驗之EDS成分分析 119 附錄六Pin-on-disk白光磨耗圖 125 附錄七Pin-on-disk白光四點磨痕深和磨痕寬 149 附錄八 聯絡人 150 自述 151

    1. O. D. Greenwooda, S. C. Moulzolfa, P. J. Blaub and R. J. Lada, The influence of microstructure on tribological properties of WO3 thin films, Wear,232(1) (1999) 84-90
    2. E. Lugscheider, S. Bärwulf, C. Barimani, Properties of tungsten and vanadium oxides deposited by MSIP–PVD process for self-lubricating applications, Surface and Coatings Technology, 120(121) (1999) 458-464
    3. T. Fu, Z.F. Zhou, K.Y. Li, Y.G. Shen, Structure, stress and hardness of sputter deposited nanocomposite W-Si-N coatings , Surface and Coatings Technology, 200(7)(2005) 2525-2530
    4. D.J. Cheng, W.P. Sun, M.H. Hon,The morphology and structure of chemically vapour-deposited Ti(C,N) coatings, Thin Solid Films, 146(1) (1987) 45-53
    5. B.E. Jacobson, C.V. Deshandey, H.J. Doerr, A.A. Karim and R.F. Bunshah, Microstructure and hardness of Ti(C, N) coatings on steel prepared by the activated reactive evaporation technique,Thin Solid Films, 118(3) (1984) 285-292
    6. A. Cavaleiro, B. Trindade, M.T. Vieira, Deposition and characterization of fine-grained W–Ni–C/N ternary films, Surface and Coatings Technology, 116(119)(1999) 944-948
    7. L. Sangaletti, L. E. Depero, G. Sberveglieri, B. Allieri, E. Bontempi, S. Groppelli, Growth of WO3 crystals from W–Ti–O thin films , Journal of Crystal Growth, 198(199)(1999) 1240-1244
    8. B. Trindade, M. T. Vieira, Crystallisation kinetics of amorphous W–Co–C sputtered films , 322(1-2) (1998) 68-73
    9. A. Ramalho, S. Fayeulle, M. T. Vieira, The role of interfacial films in the friction and wear properties of W-Co-C sputtered coatings, Thin Solid Films, 254 (1-2)(1995) 131-138
    10. A. Cavaleiro, C. Louro, Thermal behaviour of hard nanocomposite coatings within the W–Si–N system in oxidant and protective atmospheres, Surface and Coatings Technology, 201(13)(2007) 6154-6160
    11. P.N. Silva, J.P. Dias, A. Cavaleiro, Tribological behaviour of W–Ti–N sputtered thin films, Surface and Coatings Technology, 200(1-4)(2005) 186-191
    12. L. Zhang,H. C. Jiang,C. liu,J. W. Dong, P. Chow, Annealing of Al2O3 thin films prepared by atomic layer deposition, 40(12) (2007) 3707-3713
    13. A. Karuppasamy, A. Subrahmanyam, Studies on electrochromic smart windows based on titanium doped WO3 thin films, Thin Solid Films, 516(2-4) (2007) 175-178
    14. Z. Tek, M.A. Gügör, E. Çal, M. Sonugelen, C. Artunç, A. Oztarhan, A study of the mechanical properties of TiN coating of Cr–Ni alloy, Surface and Coatings Technology, 196(1-3) (2005) 317-320
    15. Wenran Feng, Dianran Yan, Jining He, Guling Zhang, Guangliang Chen, Weichao Gu, Size Yang, Microhardness and toughness of the TiN coating prepared by reactive plasma spraying, Applied Surface Science, 243 (1-4)(2005)204-213
    16. Heinz Dimigen, Claus-Peter Klages, Microstructure and wear behavior of metal-containing diamond-like coatings, Surface and Coatings Technology, 49(1-3) (1991) 543-547
    17. Li Feng, Jinke Tang, Jeffrey S. Zabinski, Tribological properties of magnetron-sputtered TiC coatings, Materials Science and Engineering: A, 257(2) (1998) 240-249
    18. Chi-Lung Chang, Da-Yung Wang, Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrates , Diamond and Related Materials, 10(8) (2001) 1528-1534
    19. A.A. Voevodin, R. Bantle, A. Matthews, Dynamic impact wear of TiCxNy and Ti-DLC composite coatings, Wear, 185(1-2) (1995) 151-157
    20. A. Matthews, A. Leyland, K. Holmberg, H. Ronkainen, Design aspects for advanced tribological surface coatings, Surface and Coatings Technology, 100(101) (1998) 1-6
    21. Y. L. Su, W. H. Kao, Optimum multilayer TiN–TiCN coatings for wear resistance and actual application , Wear, 223(1-2) (1998) 119-130
    22. S. Petrović, N. Bundaleski, D. Peruško, M. Radović, J. Kovač, M. Mitrić, B. Gaković, Z. Rakočević, Surface analysis of the nanostructured W–Ti thin film deposited on silicon, Applied Surface Science, 253(12)(2007) 5196-5202
    23. T. Cselle, A. Barimani, Today's applications and future developments of coatings for drills and rotating cutting tools, Surface and Coatings Technology, 76(77) (1995)712-718
    24. F. Klocke, T. Krieg, K. Gerschwiler, R. Fritsch, V. Zinkann, M. Pöhls, G. Eisenblätter, Improved Cutting Processes with Adapted Coating Systems, CIRP Annals - Manufacturing Technology, 47(1) (1998) 65-68
    25. H.G. Prengel, W.R. Pfouts, A.T. Santhanam, State of the art in hard coatings for carbide cutting tools, Surface and Coatings Technology, 102(3)(1998) 183-190
    26. 李邦哲, 薄膜成形技術的演進與未來-薄膜成形技術新紀元, 台灣綜合展望, 7(2003)
    27. W.R. Grove, Phil. Trans. Roy. Soc. London, 5 (1852) 87
    28. W.R. Grove, Phil. Mag., 5 (1853) 203
    29. 董家齊, 陳寬任,奇妙的物質第四態-電漿, 科學發展, 354(2002) 52–59
    30. 金原粲, 薄膜的基本技術, 日本東京大學出版會社, (1987) 3
    31. 宋健民, 以物理氣相沉積(PVD)鍍類似鑽石碳膜(DLC)(中), 工業材料148 (177)
    32. M. Komath, G. Mohan Rao, S. Mohan, Studies on the optimisation of unbalanced magnetron sputtering cathodes, Vacuum, 52(3)(1999) 307-311
    33. S. Guruvenket, G. Mohan Rao, Bias induced structural changes in tungsten nitride films deposited by unbalanced magnetron sputtering, Materials Science and Engineering B, 106(2) (2004) 172–176
    34. V. Chawla, R. Jayaganthan, A.K. Chawla, R. Chandra, Morphological study of magnetron sputtered Ti thin films on silicon substrate, Materials Chemistry and Physics, 111(2-3)(2008) 414-418
    35. K. Abourayak, S. Fayeulle, L. Vincent, C. Ribeiro, A. Cavaleiro, M.T. Vieira, Tribological behaviour at elevated temperatures of thin physical vapour deposited coatings, Surface and Coatings Technology, 80(1-2)(1996) 171-175
    36. B. Window, Recent advances in sputter deposition, Surface and Coatings Technology, 71(2) (1995) 93-97
    37. D.P. Monaghan, D.G. Teer, K.C. Laing, I. Efeoglu, R.D. Arnell, Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering, Surface and Coatings Technology, 59(1-3) (1993) 21–25
    38. P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56(1-3) (2000) 159–172
    39. M.H. Yang, 高密度電漿鍍膜技術專題-Pulsed Magnetron Sputtering, 工業材料雜誌, 232 (2006)
    40. Alicja Krella, Andrzej Czyżniewski, Cavitation erosion resistance of Cr–N coating deposited on stainless steel, Wear, 260(11-12)(2006) 1324-1332
    41. S. Kaciulis, A. Mezzi, G. Montesperelli, F. Lamastra, M. Rapone, F. Casadei, T. Valente ,G. Gusmano, Multi-technique study of corrosion resistant CrN/Cr/CrN and CrN:C coatings, Surface and Coatings Technology, 201 (2006) 313-319
    42. Sang Yul Lee, BomSok Kim, Sung Dea Kim, GwangSeok Kim , Yeh Sun Hong, Effect of Si doping on the wear properties of CrN coatings synthesized by unbalanced magnetron sputtering, Thin Solid Films, 506-507 (2006) 192-96
    43. G. Gassner, P. H. Mayrhofer, J. Patscheider, C. Mitterer, Thermal stability of nanocomposite CrC/a-C:H thin films, Thin Solid Films, 515(13) (2007) 5411-5417
    44. Y. N. Kok, P. Eh. Hovsepian, Resistance of nanoscale multilayer C/Cr coatings against environmental attack, Surface and Coatings Technology, 201(6) (2006) 3596-3605
    45. N. Lecis, G. M. La Vecchia, M. Boniardi , F. D'Errico, Fatigue behavior of duplex-treated samples coated with Cr(C,N) film, Surface and Coatings Technology, 201(6) (2006) 2335-2340
    46. Jianjun Wei, Qunji Xue, The friction and wear properties of Cr2O3 coating with aqueous lubrication, Wear, 199(2) (1996) 157-159
    47. Giovanni Bolelli, Valeria Cannillo, Luca Lusvarghi, Tiziano Manfredini, Wear behaviour of thermally sprayed ceramic oxide coatings, Wear, 261(11-12) (2006) 1298-1315
    48. J. H. Ouyang , S. Sasaki, Effects of different additives on microstructure and high-temperature tribological properties of plasma-sprayed Cr2O3 ceramic coatings, Wear, 249(1-2) (2001) 56-66
    49. B. Navin ek, P. Panjan, Oxidation resistance of PVD Cr, Cr-N and Cr-N-O hard coatings, Surface and Coatings Technology, 59(1-3) (1993) 244-248
    50. Siegfried Hofmann, Hermann A. Jehn, Effect of substrate material and residual atmosphere on the composition of the coating-substrate interface of nitride coatings, Surface and Coatings Technology, 41(2)(1990) 167-177
    51. B. Navin ek, P. Panjan, Oxidation of CrNx hard coatings reactively sputtered at low temperature, Thin Solid Films, 223(1)(1993) 4-6
    52. I. Milosev, J. M. Abels, H. H. Strehblow, B. Navinsek, M. M. Hukovic, High temperature oxidation of thin CrN coatings deposited on steel, Journal of Vacuum Science & Technology A, 14(4) (1996) 2527-2534
    53. Thorsten Kacsich, Klaus-Peter Lieb, Oxidation of thin CrN and Cr2N films analyzed via nuclear reaction analysis and Rutherford backscattering spectrometry, Thin Solid Films, 245(1-2) (1994) 4-6
    54. T. Kacsich,K. P. Lieb,A. Schaper, O. Schulte, Oxidation of thin chromium nitride films: kinetics and morphology, Journal of Physics: Condensed Matter, 8(49)(1996) 10703-1079
    55. Hiroshi Ichimura, Atsuo Kawana, High temperature oxidation of ion-plated CrN films, Journal of materials research, 9(1)(1994) 151-155
    56. Eberhard Huber, Siegfried Hofmann, Oxidation behaviour of chromium-based nitride coatings, Surface and Coatings Technology, 68-69 (1994) 64-69
    57. F. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, T. Sato, A. Nishijima, A. Kawana, H. Ichimura ,T. Kikuchi, X-ray absorption and X-ray photoelectron spectroscopic studies of air-oxidized chromium nitride thin films, Thin Solid Films, 281-282 (1996) 314-317
    58. Shen-Chih Lee, Wei-Yu Ho, F. D. Lai, Effect of substrate surface roughness on the characteristics of CrN hard film, Materials Chemistry and Physics, 43(3)(1996) 266-273
    59. O. Knotek, W. Bosch, M. Atzor, W. D. Munz, D. Hoffmann, J. Goebel, High. Temperature - High Pressures, 18(4) (1986) 435-442
    60. F. D. Lai , J. K. Wu, High Temperature and Corrosion Properties of Cathodic-Arc-Plasma-Deposited CrN Coatings, Surface and Coatings Technology, 64 (1)(1994) 53-57
    61. J. Almer, M. Oden, L. Hultman, G. Hakansson, Microstructural evolution during tempering of arc-evaporated Cr–N coatings, Journal of Vacuum Science & Technology A, 18(1) (2000) 1116-1126
    62. C. Héau, R. Y. Fillit, F. Vaux , F. Pascaretti, Study of thermal stability of some hard nitride coatings deposited by reactive magnetron sputtering, Surface and Coatings Technology, 120-121 (1999) 200-205
    63. W. Herr, E. Broszeit, The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings, Surface and Coatings Technology, 97 (1-3)(1997) 335-340
    64. 林琮暉, 非平衡磁控濺鍍氮化鉻及氧化鉻之磨潤特性及車削、鑽削性能研究, 國立成功大學機械工程研究所碩士論文, 九十四碩士論文
    65. N.M.G. Parreira, N.J.M. Carvalho, A. Cavaleiro, Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings, Thin Solid Films, 510(1-2)(2006) 191-196
    66. N.M.G. Parreira, N.J.M. Carvalho, F. Vaz, A. Cavaleiro, Mechanical evaluation of unbiased W-O-N coatings deposited by d.c. reactive magnetron sputtering, Surface and Coatings Technology, 200(22-23) (2006) 6511-6516
    67. 陳又誠,氮化鈦表面披覆氧化鎢之磨潤性質研究,國立成功大學機械工程研究所,九十八碩士論文
    68. T. Arai, H. Fujita, M. Watanabe, Evaluation of adhesion strength of thin hard coatings, Thin Solid Films, 154(1-2) (1987) 387-401
    69. T.W. Scharf, A. Rajendran, R. Banerjee, F. Sequeda, Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite thin films, Thin Solid Films, 517(19) (2009) 5666-5675
    70. H. Zhang, D.Y. Li, Effects of sputtering condition on tribological properties of tungsten coatings, Wear, 255(7-12) (2003) 924-932

    下載圖示 校內:2012-08-25公開
    校外:2012-08-25公開
    QR CODE