簡易檢索 / 詳目顯示

研究生: 邱偉倫
Chiu, Wei-Lun
論文名稱: 液相沉積石墨烯透明導電薄膜製程 : 最佳化、性質極限以及創新改良
Liquid Phase Deposition Graphene TCFs: Optimization, Limitation and Innovation
指導教授: 謝馬利歐
Mario Hofmann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 75
中文關鍵詞: 石墨烯透明導電薄膜透明電極液態沉積鑄造沉積
外文關鍵詞: Graphene, Transparent Conductive Film, Transparent Electrode, Solution Depostion, Casting Deposition
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明導電薄膜 (TCF) 在近年來受到極大的矚目,因為它在消費性電子商品以及能源相關產業上扮演著極其重要的角色。隨著對於攜帶性裝置的改良的要求,以及TCF主原料ITO來源日漸稀少,TCF技術的創新以及尋找ITO的替代品突破變成當務之急。目前,奈米金屬線,奈米碳管以及石墨烯在ITO替代品的競爭上佔據領先的地位。如果我們進一步考慮其他因子,像是機械強度或是對於使用環境容忍度,石墨烯可說是最佳的選擇。
    然而石墨烯在電性以及光學性質上,石墨烯仍比其他兩個選項略遜一籌,因此,將石墨烯的性質改善電成為我們的最大目標。首先,我們利用液態沉積噴墨製造TCF試片,這個製程比市面上流行的化學氣相沉積 (CVD) 來得有效率,之後,我們會找出噴墨石墨烯性能極限。為了要突破石墨烯TCF的極限,我們提出一個新的製程,藉由這個製程,我們可以減少石墨的覆蓋,進而提高透光度。我們預期Figure of Merit 會有劇烈的提升,我們希望藉此,石墨烯可以變成最有力的競爭者

    Recently, Transparent Conductive Film (TCF) has obtained tremendous attension since it plays an essntial role on both comsumable electronics and energy-related industry. With the request of modification on portable devices and the shortage of main ingredient, ITO, innovation of TCF and replacement for ITO become the first priority in the related research field. Currently, metal nanowire (NW), carbon nano tube (CNT) and graphene stand at the prior position in the campaign. Providing that we take other factors, such as strength and environmental durability into consideration, graphene will be the most appropriate option to fabriacte TCF.
    Because the optical and elecronical properties of graphene still fail to compete with the other two candidate, to improve the performance of graphene is going to be the biggest goal for us. We first take adevatage of solution depostion, which is relatively efffcient process comparing to Chemical Vapor Deposition (CVD) to fabricate TCF and find the limitaion of printed graphene TCF. In order to surpass the limit of graphene TCF, we here suggest a new process which can reduece the coverage of graphene in the meanwhile keep low resistance. By this process, we expect the Figure of Merit can be enhanced drastically and we hope it can make graphene the stongest candidate in the fabrication of TCF.

    Contents Table of Figure III Content of table VI Introduction 1 1.1 Transparent Conductive Film (TCF): key to contemporary consumable digital devices and energy industry 1 1.2 ITO: the main material of TCFs 3 1.3 Potential candidates for replacing ITO 4 1.3.1 Network of Metal Nanowire and Carbon Nano Tube (CNTs) 6 1.3.2 Conductive doped polymer: PEDOT 9 1.3.3 Graphene: 10 1.4 Fabrication of Graphene TCFs 12 1.4.1 Chemical vapor deposition 12 1.4.2 Deposition from solution 13 1.5 Motivation 16 Chapter 2 Experiment and Background 18 2.1 Printed TCFs 18 2.1.1 Parameters 18 2.1.2 Spraying Equipment 20 2.1.3 TCFs fabrication 22 2.2 Edge graphene network TCFs 25 2.2.1 Substrate preparation 25 2.2.2 Deposition methods 26 2.3 Characterization Equipment 28 Chapter 3 Ink-Printing TCF: optimization and behavior 29 3.1 Figure of Merit (FoM) 29 3.2 Percolation and bulk behavior of conductive film 30 3.3 Results 31 3.3.1 Ink analysis 31 3.3.2 Analysis of spraying quality 36 3.3.3 Percolation and Bulk Regime Analysis 37 3.4 Conclusions 45 3.5 Outlook 46 3.5.1 Modification of Current Results 46 3.5.2 Future Work 46 Chapter 4 Edge Graphene Networks 47 4.1 Edge Graphene Conductive Network 47 4.2 Simulation 48 4.3 Capillary Force Assembly 52 4.4 Result 54 4.4.1 Sample Fabrication 54 4.4.2 Structure of edge graphene stripes 55 4.4.3 Electrical Properties. 58 4.4.4 Optical Properties 61 4.4.5 Performance (FoM) 64 4.4.6 Effect Of Concentration And Other Materials 67 4.5 Conclusions 69 4.6 Outlook 69 4.6.1 Modification of Current Results 69 Reference 71

    1 Hecht, D. S., Hu, L. & Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced materials 23, 1482-1513, doi:10.1002/adma.201003188 (2011).
    2 Kumar, A. & Zhou, C. The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win? Acs Nano 4, 11-14, doi:10.1021/nn901903b (2010).
    3 De, S. et al. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. Acs Nano 3, 1767-1774, doi:10.1021/nn900348c (2009).
    4 De, S. et al. Transparent, Flexible, and Highly Conductive Thin Films Based on Polymer - Nanotube Composites. Acs Nano 3, 714-720, doi:10.1021/nn800858w (2009).
    5 Edwards, P. P., Porch, A., Jones, M. O., Morgan, D. V. & Perks, R. M. Basic materials physics of transparent conducting oxides. Dalton Transactions, 2995-3002, doi:10.1039/b408864f (2004).
    6 Kim, H. et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. Journal of Applied Physics 86, 6451-6461, doi:10.1063/1.371708 (1999).
    7 Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nature Photonics 6, 808-816, doi:10.1038/nphoton.2012.282 (2012).
    8 Lee, P. et al. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Advanced materials 24, 3326-3332, doi:10.1002/adma.201200359 (2012).
    9 Hu, L. et al. Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America 106, 21490-21494, doi:10.1073/pnas.0908858106 (2009).
    10 Yu, Z. et al. Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes. Advanced materials 23, 664-+, doi:10.1002/adma.201003398 (2011).
    11 Wu, H. et al. A transparent electrode based on a metal nanotrough network. Nature Nanotechnology 8, 421-425, doi:10.1038/nnano.2013.84 (2013).
    12 Khaligh, H. H. & Goldthorpe, I. A. Failure of silver nanowire transparent electrodes under current flow. Nanoscale Research Letters 8, doi:10.1186/1556-276x-8-235 (2013).
    13 De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon Nanotubes: Present and Future Commercial Applications. Science 339, 535-539, doi:10.1126/science.1222453 (2013).
    14 Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Advanced Functional Materials 22, 421-428, doi:10.1002/adfm.201101775 (2012).
    15 Hohnholz, D., Okuzaki, H. & MacDiarmid, A. G. Plastic electronic devices through line patterning of conducting polymers. Advanced Functional Materials 15, 51-56, doi:10.1002/adfm.200400241 (2005).
    16 Kim, Y. H. et al. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials 21, 1076-1081, doi:10.1002/adfm.201002290 (2011).
    17 Vitoratos, E. et al. Thermal degradation mechanisms of PEDOT:PSS. Organic Electronics 10, 61-66, doi:10.1016/j.orgel.2008.10.008 (2009).
    18 Jorgensen, M., Norrman, K. & Krebs, F. C. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells 92, 686-714, doi:10.1016/j.solmat.2008.01.005 (2008).
    19 Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388, doi:10.1126/science.1157996 (2008).
    20 Charlier, J. C., Eklund, P. C., Zhu, J. & Ferrari, A. C. in Carbon Na Notubes: Advanced Topics in the Synthesis, Structure, Properties and Applications Vol. 111 Topics in Applied Physics (eds A. Jorio, G. Dresselhaus, & M. S. Dresselhaus) 673-709 (2008).
    21 Bruch, L. W. BAND-STRUCTURE EFFECTS IN THE SPECIFIC-HEAT OF HELIUM ADSORBED ON GRAPHITE - PERTURBATION-THEORY. Physical Review B 23, 6801-6804, doi:10.1103/PhysRevB.23.6801 (1981).
    22 Pisanty, A. THE ELECTRONIC-STRUCTURE OF GRAPHITE - A CHEMISTS INTRODUCTION TO BAND THEORY. Journal of Chemical Education 68, 804-808 (1991).
    23 Wallace, P. R. THE BAND THEORY OF GRAPHITE. Physical Review 71, 476-476 (1947).
    24 Wallace, P. R. THE BAND THEORY OF GRAPHITE. Physical Review 71, 622-634, doi:10.1103/PhysRev.71.622 (1947).
    25 Behura, S. K. et al. Fabrication of Bi-Layer Graphene and Theoretical Simulation for Its Possible Application in Thin Film Solar Cell. Journal of Nanoscience and Nanotechnology 14, 3022-3027, doi:10.1166/jnn.2014.8572 (2014).
    26 Pham, V. H. et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48, 1945-1951, doi:10.1016/j.carbon.2010.01.062 (2010).
    27 Zhao, J., Pei, S., Ren, W., Gao, L. & Cheng, H.-M. Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. Acs Nano 4, 5245-5252, doi:10.1021/nn1015506 (2010).
    28 Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312-1314, doi:10.1126/science.1171245 (2009).
    29 Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L. & Hersam, M. C. Inkjet Printing of High Conductivity, Flexible Graphene Patterns. Journal of Physical Chemistry Letters 4, 1347-1351, doi:10.1021/jz400644c (2013).
    30 Li, X. et al. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters 9, 4359-4363, doi:10.1021/nl902623y (2009).
    31 Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710, doi:10.1038/nature07719 (2009).
    32 De Arco, L. G. et al. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. Acs Nano 4, 2865-2873, doi:10.1021/nn901587x (2010).
    33 Pop, E., Mann, D., Wang, Q., Goodson, K. E. & Dai, H. J. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters 6, 96-100, doi:10.1021/nl052145f (2006).
    34 Bi, H., Huang, F., Liang, J., Xie, X. & Jiang, M. Transparent Conductive Graphene Films Synthesized by Ambient Pressure Chemical Vapor Deposition Used as the Front Electrode of CdTe Solar Cells. Advanced materials 23, 3202-+, doi:10.1002/adma.201100645 (2011).
    35 Miyasaka, Y., Nakamura, A. & Temmyo, J. Graphite Thin Films Consisting of Nanograins of Multilayer Graphene on Sapphire Substrates Directly Grown by Alcohol Chemical Vapor Deposition. Japanese Journal of Applied Physics 50, doi:10.1143/jjap.50.04dh12 (2011).
    36 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 5, 574-578, doi:10.1038/nnano.2010.132 (2010).
    37 Nathan, A. et al. Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the Ieee 100, 1486-1517, doi:10.1109/jproc.2012.2190168 (2012).
    38 Torrisi, F. et al. Inkjet-Printed Graphene Electronics. Acs Nano 6, 2992-3006, doi:10.1021/nn2044609 (2012).
    39 Capasso, A. et al. Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach. Solid State Communications 224, 53-63, doi:10.1016/j.ssc.2015.08.011 (2015).
    40 Finn, D. J. et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. Journal of Materials Chemistry C 2, 925-932, doi:10.1039/c3tc31993h (2014).
    41 de Gans, B. J., Duineveld, P. C. & Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Advanced materials 16, 203-213, doi:10.1002/adma.200300385 (2004).
    42 Li, J. et al. Efficient Inkjet Printing of Graphene. Advanced materials 25, 3985-3992, doi:10.1002/adma.201300361 (2013).
    43 Kim, H. et al. Sheet Size-Induced Evaporation Behaviors of Inkjet-Printed Graphene Oxide for Printed Electronics. Acs Applied Materials & Interfaces 8, 3193-3199, doi:10.1021/acsami.5b10704 (2016).
    44 Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet Printing-Process and Its Applications. Advanced materials 22, 673-685, doi:10.1002/adma.200901141 (2010).
    45 Soltman, D. & Subramanian, V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24, 2224-2231, doi:10.1021/la7026847 (2008).
    46 Jia, Y. et al. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method. Acs Applied Materials & Interfaces 8, 9865-9871, doi:10.1021/acsami.6b00500 (2016).
    47 De, S. & Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? Acs Nano 4, 2713-2720, doi:10.1021/nn100343f (2010).
    48 Pesach, D. & Marmur, A. MARANGONI EFFECTS IN THE SPREADING OF LIQUID-MIXTURES ON A SOLID. Langmuir 3, 519-524, doi:10.1021/la00076a013 (1987).
    49 Lim, J. A. et al. Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers. Advanced Functional Materials 20, 3292-3297, doi:10.1002/adfm.201000528 (2010).
    50 Tien, H.-W. et al. Preparation of transparent, conductive films by graphene nanosheet deposition on hydrophilic or hydrophobic surfaces through control of the pH value. Journal of Materials Chemistry 22, 2545-2552, doi:10.1039/c1jm14564a (2012).
    51 Coleman, J. N. Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research 46, 14-22, doi:10.1021/ar300009f (2013).
    52 Lampin, M., WarocquierClerout, R., Legris, C., Degrange, M. & SigotLuizard, M. F. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of Biomedical Materials Research 36, 99-108, doi:10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e (1997).
    53 De, S., King, P. J., Lyons, P. E., Khan, U. & Coleman, J. N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. Acs Nano 4, 7064-7072, doi:10.1021/nn1025803 (2010).
    54 Chaudhury, M. K. Interfacial interaction between low-energy surfaces. Materials Science & Engineering R-Reports 16, 97-159, doi:10.1016/0927-796x(95)00185-9 (1996).
    55 Kabza, K., Gestwicki, J. E. & McGrath, J. L. Contact angle goniometry as a tool for surface tension measurements of solids, using Zisman plot method - A physical chemistry experiment. Journal of Chemical Education 77, 63-65 (2000).
    56 Kozbial, A. et al. Study on the Surface Energy of Graphene by Contact Angle Measurements. Langmuir 30, 8598-8606, doi:10.1021/la5018328 (2014).
    57 Li, D. & Neumann, A. W. CONTACT ANGLES ON HYDROPHOBIC SOLID-SURFACES AND THEIR INTERPRETATION. J. Colloid Interface Sci. 148, 190-200, doi:10.1016/0021-9797(92)90127-8 (1992).
    58 Maarouf, A. A., Kasry, A., Chandra, B. & Martyna, G. J. A graphene-carbon nanotube hybrid material for photovoltaic applications. Carbon 102, 74-80, doi:10.1016/j.carbon.2016.02.024 (2016).
    59 Belekoukia, M. et al. Electrochemically exfoliated graphene/PEDOT composite films as efficient Pt-free counter electrode for dye-sensitized solar cells. Electrochimica Acta 194, 110-115, doi:10.1016/j.electacta.2016.02.073 (2016).
    60 Susmitha, K. et al. Carbon nanohorns functionalized PEDOT:PSS nanocomposites for dye sensitized solar cell applications. Journal of Materials Science-Materials in Electronics 27, 4050-4056, doi:10.1007/s10854-015-4261-z (2016).
    61 Small, W. R. & Panhuis, M. I. H. Inkjet printing of transparent, electrically conducting single-waited carbon-nanotube composites. Small 3, 1500-1503, doi:10.1002/smll.200700110 (2007).
    62 De, S. et al. Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions. Small 6, 458-464, doi:10.1002/smll.200901162 (2010).
    63 Zheng, Q. et al. Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry 22, 25072-25082, doi:10.1039/c2jm34870e (2012).
    64 Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials 13, 624-630, doi:10.1038/nmat3944 (2014).
    65 Qu, Q., Gu, C. & Hu, X. Capillary Coated with Graphene and Graphene Oxide Sheets as Stationary Phase for Capillary Electrochromatography and Capillary Liquid Chromatography. Analytical Chemistry 84, 8880-8890, doi:10.1021/ac3023636 (2012).
    66 Tkacz, R., Oldenbourg, R., Fulcher, A., Miansari, M. & Majumder, M. Capillary-Force-Assisted Self-Assembly (CAS) of Highly Ordered and Anisotropic Graphene-Based Thin Films. Journal of Physical Chemistry C 118, 259-267, doi:10.1021/jp4080114 (2014).
    67 Somu, S. et al. Topological Transitions in Carbon Nanotube Networks via Nanoscale Confinement. Acs Nano 4, 4142-4148, doi:10.1021/nn100714v (2010).

    無法下載圖示 校內:2021-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE