| 研究生: |
薛孟甄 Hsueh, Meng-Chen |
|---|---|
| 論文名稱: |
基礎加勁構造於高鐵減振效益量測之探討 A Study on Vibration Mitigation Effectiveness of Foundation Stiffened Blocks in High Speed Rail |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 高速鐵路 、振動 、基礎加勁 、減振 、1/3倍頻頻譜 |
| 外文關鍵詞: | THSP, vibration, foundation stiffened blocks, vibration reduction, one-third octave spectrum |
| 相關次數: | 點閱:153 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台南科學工業園區高速鐵路減振工程,其減振設施包含高鐵基礎加勁構造及彈性減振牆,過去對減振工程之減振成效研究多著重於兩者之總體減振成效,本研究僅針對高鐵基礎加勁構造之減振效益進行量測分析與討論。
高鐵基礎加勁工程減振效益之檢測方法,分別在有施作高鐵基礎加勁區(簡稱區內)與無施作高鐵基礎加勁區(簡稱區外)距離高鐵橋墩中心線12.5 m及200 m處進行列車行進引致之振動量測,藉由區內與區外量測結果進行比較分析,以評估高鐵基礎加勁構造之減振效益。
量測分析結果顯示,基礎加勁構造之正減振效益集中於2 ~ 8 Hz低頻部分,而於10 ~ 25 Hz呈現負減振效益。減振效益於12.5 m處在與車行垂直方向之減振效益較明顯,而200 m處則車行方向較明顯。
The vibration mitigation system of high speed rail in Tainan Science-Based Industrial Park (TSIP) is composed of foundation stiffened blocks (FSB) and elastic-based wall. Previous studies about vibration mitigation effectiveness mainly focus on total vibration mitigation effectiveness. This study will focus on the measurement and analysis about vibration mitigation effectiveness of foundation stiffened blocks only.
The method of measuring the vibration effectiveness of foundation stiffened blocks is to measure the ground vibrations induced by the train moving inside the TSIP and outside the TSIP, respectively. The foundation stiffened blocks are installed only inside the TSIP. The vibrations at the distance 12.5 m and 200 m from the THSR-alignment centerline are measured and studied.
The results show that the positive effectiveness occurred in the frequency of 2 ~ 8 Hz, while the negative effectiveness occurred in the frequency of 10 ~ 25 Hz. The vibration mitigation effectiveness is obvious for the vibration in the direction perpendicular to the train moving direction at 12.5 m, while it is obvious for the vibration direction parallel to the train moving direction at the distance 200 m from the THSR-alignment centerline.
1.ANSI S1.11-1986 (ASA 65-1986), “Specifications for octave-band and fractional-octave-band analog and digital filters,” Acoustical Society of America, New York (1993).
2.Bolt, B.A., Earthquakes: A Primer, W.H. Freeman, San Francisco, 241p (1978).
3.British Standards Institution, BS 6472: British Standard Guide to Evaluation of Human Exposure to Vibration in Buildings (1 Hz to 80 Hz) (1984).
4.British Standards Institution, B 6841: Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration and Repeated Shock (1987).
5.Buzdgan, G., Mihailescu, E., and Rades, M., Vibration Measurement, Martinus Nijhoff Publishers, Romania, 347p (1986).
6.Das, B.M, Principles of Soil Dynamics, PWS-KENT, Boston (1993).
7.Doeding, C.H., Construction Vibrations, Prentice Hall International Limited, London (1996).
8.German Institute for Standardization, DIN 4150: Vibrations in Civil Engineering - Part 3: Effects on Structures (1983).
9.Gordon, C.G., “Generic criteria for vibration sensitive equipment,” SPIE, Vol. 1619, pp. 71-75 (1991).
10.Gutowski, T.G. and Dym, C.L., “Propagation of ground vibration: a review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
11.Heckl, M., Hauck, G., Wettschureck, R., “Structure-borne sound and vibration from rail traffic,” Journal of Sound and Vibration, Vol. 193, No. 1, pp. 175-184 (1996).
12.International Standard Organization, ISO 2631: “Guide for the evaluation of human exposure to whole-body vibration,” ISO Standards Handbook 4: Acoustics, Vibration and Shock, 1st ed., ISO secretariat, Geneva (Switz.), pp. 493-507 (1980).
13.Japanese Industrial Standard, JIS 28735: Methods of Measurement for Vibration level (1981).
14.Japanese Industrial Standard, JIS C1510: Vibration Level Meters (1995).
15.Ju, S.H., Lin, H.T. and Huang, J.Y., “Dominant frequencies of train-induced vibrations,” Journal of Sound and Vibration, Vol. 319, Issues 1–2, pp. 247-259 (2008).
16.Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 3, pp. 115-126 (2000).
17.Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey (1996).
18.Meade, M.L., and Dillon, C.R., Signals and Systems, Chapman & Hall, London (1991).
19.Nelson, P., “On deterministic developments of traffic stream models,” Transportation Research Part B: Methodological, Vol. 29B, No. 4, pp. 297-302 (1995).
20.Ni, S.H., Huang, Y.H., Ko, C.H., “An automatic procedure for train speed evaluation by the dominant frequency method,” Computers and Geotechnics, Vol. 38, No. 4, pp. 416-422 (2011).
21.Oppenheim, A.V., Schafer, R.W., and Buck, J.R., Discrete-Time Signal Processing, 2nd Edition. Prentice-Hall, Inc., New Jersey (1999).
22.Richart, Jr., F.E., “Foundations vibrations,” Transactions, ASCE, Vol. 127, Part 1, pp. 863-898 (1962).
23.Richart, Jr., F.E., Hall, Jr., J.R., and Woods, R.D., Vibrations of Soil and Foundations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1970).
24.Saurenman, H.J., Nelson, J.T., Wilson, G.P., “Ground-borne vibration generated by various rail transport vehicles,” APTA Rapid Transit Conference, Baltimore, Maryland (1984).
25.Smith, J.D., Vibration Measurement and Analysis, Butterworths, London, 166p (1989).
26.Thompson, D.J., “Wheel-rail noise generation, part I~V: introduction and interaction model,” Journal of Sound and Vibration, Vol. 161, No. 3, pp. 387-482 (1993).
27.Thompson, D.J., “Experimental analysis of wave propagation in railway track,” Journal of Sound and Vibration, Vol. 203, No. 5, pp. 867-888 (1997).
28.Ungar, E.E., and White, R.W., “Footfall-induced vibrations of floors supporting sensitive equipment,” Sound and Vibration, Vol. 13, No. 10, pp. 10-13 (1979).
29.Wiss, F., and Parmelee, R.A., “Human perception of transient vibrations,” Journal of the Structural Division, ASCE, Vol. 100, No. 4, pp. 773-787 (1974).
30.Woods, R.D., “Screening of surface waves in soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. 4, pp. 951-979 (1968).
31.中鼎工程股份有限公司,「南科振動影響評估及對策研擬工作第一階段工作成果報告」,台灣高鐵計畫,台南(1999)。
32.王藝明,「捷運木柵線交通振動特性之研究」,碩士論文,國立交通大學交通運輸研究所,台南(1997)。
33.朱聖浩,「南科工址高鐵行車振動模擬及電子廠房減振對策」,工程科技通訊第七十三期,第53-58頁(2004)。
34.行政院環保署,「環境振動量測與管制技術之建立」,報告編號:EPA-87-E3L1-03-03(1998)。
35.行政院國科會,「高鐵試車行經南科減振量測結果說明會簡報」,2006年5月8日。
36.李吉龍,「高科技園區環境微振監測系統之程式發展」,碩士論文,國立成功大學土木工程研究所,台南(2001)。
37.沈怡君,倪勝火,「高速鐵路振動量測技術探討」,中華技術,第81期,第132-139頁(2009)。
38.沈怡君,顏彬任,倪勝火,「高速鐵路引致地盤振動之地工防治對策探討」,地工技術,第88期,第15-22頁(2001)。
39.町田富士夫,Dynamic Response of Concrete Railway Bridges, Japan(2000)。
40.林東興,「台南科學園區環境振動監測資料之分析研究」,碩士論文,國立成功大學土木工程研究所,台南(2006)。
41.林聰悟,陳正興,李洋傑,「高鐵行經南科園區振動研究-高架橋基礎與連續基礎之減振效果評估」,國家地震工程研究中心,報告編號:NCREE-00-001(2000)。
42.南部科學工業園區網站(http://www.stsipa.gov.tw/web/indexGroups)。
43.倪勝火,「九十七年台南園區環境微振監測系統佈設計畫期末報告」,財團法人成大研究發展基金會,南部科學工業園區管理局,(2008)。
44.倪勝火,朱聖浩,「高雄都會區大眾捷運系統岡山路竹延伸線對路竹科園之振動影響評估」,財團法人中華顧問工程司,台南(2004)。
45.倪勝火,莊明仁,鍾啟泰,「台南科學園區背景及相關振源量測與分析」,第20屆中日工程技術研討會公共工程組(10-2),高速鐵路行車引致軌道振動之問題論文集,台南,第13-129頁(1999)。
46.陳宗國,「高鐵行車振動傳遞機制之研究」,碩士論文,國立成功大學土木工程研究所,台南(2005)。
47.陳維翔,「台南科學園區減振工程效能監測系統之發展」,碩士論文,國立台灣大學工程科學及海洋工程研究所,台南(2007)。
48.國家地震工程研究中心,「高鐵行經南科引致振動問題之減振可能方案評估」,報告編號:NCREE-01-010(2001)。
49.張清泉,「高鐵行車振動在軟弱土層之行為研究」,碩士論文,國立成功大學土木工程研究所,台南(2003)。
50.曾祥岳,「捷運列車引致振動之衰減模式之分析」,碩士論文,國立成功大學土木工程研究所,台南(2002)。
51.楊智幃,「捷運列車引致土層振動與衰減特性之研究」,碩士論文,國立成功大學土木工程研究所,台南(2001)。
52.葉彥良,「列車行經路面之振動特性分析」,碩士論文,國立成功大學土木工程研究所,台南(2007)。
53.游旻達,「高鐵列車在南科園區引致振動之影響研究」,碩士論文,國立成功大學土木工程研究所,台南(2005)。
54.蔡瑋育,「高鐵列車行經南科園區引致環境振動之分析」,碩士論文,國立成功大學土木工程研究所,台南(2008)。
55.鐘天欣,「南部科學園區環境振動之研究」,碩士論文,國立成功大學土木工程研究所,台南(2004)。
56.鍾慶樺,「微電子廠之振動分析」,碩士論文,國立成功大學航空太空工程研究所,台南(2002)。
57.鴻華聯合科技公司,「台南科學工業園區減振工程細部設計與施工-減振效能分析報告」(2007)。