簡易檢索 / 詳目顯示

研究生: 顏士欽
Yen, Shih-Chin
論文名稱: 探討冷軋加工對鈷基合金靶材的優先方位及磁通量之影響
On the Influences of Cold Rolling on the Preferred Orientation and the Magnetic Flux of Cobalt-based Alloy
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 102
中文關鍵詞: 鈷基合金磁通量優先方位冷軋加工
外文關鍵詞: cobalt-based alloy, cold rolling, preferred orientation, magnetic flux
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於探討冷軋加工對鈷基合金靶材的優先方位及磁通量之影響。
    本研究採用三種不同冷軋程度的試片加以分析,分別是:鑄造後未經冷軋(0%)之試片(A)、鑄造後經1.2%冷軋程度之試片(B)以及鑄造後經7.7%冷軋程度之試片(C)。先以ICP成分分析以確定所含元素組成,配合X光繞射分析(XRD)所得之結果來判斷冷軋前後的組成相,再使用OM、SEM觀察冷軋前後的顯微結構組織,並使用EDS成分分析做進一步的相鑑定確認。另一方面,為了觀察冷軋是否造成試片產生優先方位,使用X光繞射所得之{2-1-10}極圖與{2-1-13}極圖來加以佐證。而磁性相關的實驗,則選擇以VSM測量冷軋前後之磁滯曲線。
    XRD實驗結果顯示,試片存在Co(HCP)以及Co5Zr(FCC)結構,而A的靶材中央、B的靶材中央以及B的1/2靶材半徑區域等三處除了Co(HCP)與Co5Zr(FCC)外還存在Co(FCC)結構。X光繞射所得之{2-1-10}極圖與(2-1-13}極圖顯示,冷軋後並無顯著的優先方位產生。而磁透率方面,隨著冷軋程度的增加,磁通量呈現下降的趨勢。

    In this study cobalt-based alloy of as-casted, after 1.2% and 7.7% cold-rolled was used to investigate the effect of cold rolling on the preferred orientation and the magnetic flux. The chemical composition and phase identification of the cobalt-based alloy were analyzed using induced-couple plasma (ICP) method and x-ray diffraction (XRD), respectively. Microstructures of samples were characterized by optical microscopy (OM) and scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) was served to identify the chemical composition of phases. Magnetization and preferred orientation behavior were measured by vibrating sample magnetometer (VSM) and pole figures of {2-1-10} and {2-1-13}, respectively.
    It was observed that a hcp phase of Co and a fcc phase of Co5Zr exist in all samples from XRD results. The fcc phase of Co was found in the target center of as-casted and after 1.2% cold-rolling, and in the half radius region of the sample after 1.2% cold-rolling. After cold rolling up to 1.2% it was not able to observe a strong rolling texture from the {2-1-10} and {2-1-13} pole figures. The magnetic flux decreases with increasing cold rolling.

    摘 要 Ⅰ Abstract Ⅱ 目 錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 前言 1 第二章 文獻回顧及相關理論 3 2.1 濺鍍薄膜的影響因素 3 2.2 鈷基合金設計原理 5 2.2.1 Hume–Rothery定律 5 2.2.2 相轉變溫度 10 2.3 磁性物質 14 2.3.1 磁性物質的種類 14 2.3.2 鐵磁性物質的特性 17 2.4 磁異向性之影響因素 19 第三章 材料及實驗步驟 26 3.1 試片準備 26 3.2 實驗步驟 28 3.2.1 ICP 28 3.2.2 X光相鑑定及優選方位鑑定 28 3.2.3 掃描式電子顯微鏡分析及EDS成分分析 29 3.2.4 磁性量測 31 3.3 實驗流程 34 第四章 實驗結果 35 4.1 ICP成分分析 35 4.2 OM顯微組織觀察 36 4.3 XRD結構分析 40 4.4 XRD優先方位分析 46 4.5 SEM - EDS分析 54 4.6 VSM磁性量測 73 第五章 討論 82 5.1 鑄造位置對顯微組織的影響 82 5.2 鑄造位置對磁透率的影響 88 5.3 冷軋對顯微組織的影響 90 5.4 冷軋對磁透率的影響 95 5.5 優先方位對磁透率的影響 98 第六章 結論 99 參考文獻 100 附錄 102

    [1] J. C. Allan and R. D. Fisher, IEEE Trans. Magn., 23 (1987) 122-124.
    [2] T. Yamada, Y. Higuchi, N. Tani, M. Ishikawa, Y. Ota, K. Nakamura and A. Itoh, J. Vac. Sci. Technol. A5 (1987) 1971-1974.
    [3] T.B. Massalski, Ed., Binary Alloy Phase Diagrams, v.1, ASM, Metals Park, Ohio (1986).
    [4] Centre d'Information du Cobalt, Cobalt Monograph, Brussels, 1960.
    [5] A. Seeger, Z. Metallkd., 47 (1956) 653-660.
    [6] M.Weigert, St. U. Schittny and B.L.Gehman. Mat. Sci. Engin., A139 (1991) 359-363.
    [7] K. KosKi, J. Hölsä and P. Juliet, Surface & Coatings Technol., 115 (1999) 163-171.
    [8] C. Mitterer, O. Heuzè and V.-H. Derflinger, Surface & Coatings Technol., 89 (1997) 233-238.
    [9] J. A. Dunlop, B. Y. Pouliquen, T. J. Drinnon, D. T. Wilcoxen, J. C. Huneke, I. C. Ivanov, D. B. Knorr and D. P. Tracy, J. Vac. Sci. Technol., A11 (1993) 1558-1565.
    [10] C.E. Wickersham Jr., J. Vac. Sci. Technol., A5 (1987) 1755-1758.
    [11] G.R. Haupt and C.E. Wickersham Jr., J. Vac. Sci. Technol., A7 (1989) 2355-2358.
    [12] H. Tsuge and S. Esho, J. Appl. Phys., 52 (1981) 4391-4395.
    [13] L. Succo, J. Esposito, M. Cleeves, S. Whitney, R. E. Lionetti and C. E. Wickersham Jr., J. Vac. Sci. Technol., A7 (1989) 814-816.
    [14] R. S. Bailey, J. Vac. Sci. Technol., A 10 (1992) 1701-1705.
    [15] A. Galdikas, L. Pranevicius and C. Templier, Appl. Surf. Sci. 103 (1996) 471-477.
    [16] W. Hume-Rothery and H. M. Powell, Z. Krist., 91 (1935) 23.
    [17] W. Hume-Rothery, Atomic Theory for Students of Metallurgy, 5th ed., The Institute of Metals, London, 1969.
    [18] W. Hume-Rothery, R. W. Smallman and C. W. Haworth, The Structure of Metals and Alloys, 5th ed., The Institute of Metals, London, 1969.
    [19] A. H. Cottrell, An Introduction to Metallurgy, Edward Arnold, London, 1967, p.192.
    [20] A. R. Miedema, F. R. de Boer and P. F. de Chatel, J. Phys., F3 (1973) 1558–1576.
    [21] M. Hansen and P. Anderko, Binary Alloy Systems, McGraw-Hill, New York (1958).
    [22] W. Köster, Z. Metallkunde, 43 (1952) 283-286.
    [23] U. Hashimoto, Nippon Kinzoku Gakkai-Si, 1 (1937) 177-190.
    [24] M. E. El-Dahshan and M.I. Hazzaa, Materials and Corrosion, 38 (1987) 422.
    [25] S. Nakagawa, S. Tanaka and M. Naoe, J. Magn. Magn. Mater., 155 (1996) 231-233.
    [26] T. P. Nolan, Y. Hirayama and M. Futamoto, J. Appl. Phys., 79 (1996) 5359.
    [27] M. Naoe and S. Kadokura, J. Magn. Magn. Mater., 193 (1999) 185.
    [28] K. Okimura and K. Yamauchi, J. Appl. Phys. 42 (2003) 3641-3647.
    [29] M. Schlott, K. Teng, B. Gehman and M. Weigert, German Patent Application P4410114 (1995).
    [30] M. Schlott, M. Weigert and B. Gehman, IEEE Trans. Magn., 31 (1995) 2818-2820.
    [31] C. Kittel, Introduction of Solid State Physics, 7th ed, John Wiley & Sons inc., New York (1997).
    [32] R. C. O'Handley, Modern Magnetic Materials, John Wiley & Sons inc., New York (2000).
    [33] D. K. Cheng, Field and Wave Electromagnetics, 2nd Ed., Addison-Wesley, New York (1989).
    [34] K. Honda, S. Kaya, Sci. Reports Tohoku Univ., 17 (1928) 1157-1177.
    [35] H. J. G. Draaisma, W. J. M. de Jonge, J. Appl. Phys., 64 (1998) 3610.
    [36] B. D. Cullity, Introduction to Magnetic Materials, Addison Wesley, New York (1972).
    [37] E. C. Stoner and E.P. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Phil. Trans. Roy. Soc., A240 (1948) 599-642.
    [38] S. Foner, Versatile and Sensitive Vibrating-Sample Magnetometer, Rev. Sci. Instr., 30 (1959) 548-557.
    [39] D. Walton and B. Chalmers, Trans. AIME, 215 (1959) 447.
    [40] R. E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, 3rd Ed., PWS-Kent Pub., Boston (1992).
    [41] M. Schlott, M. Weigert and B.L. Geman. IEEE Trans. Magn., 31 (1995) 2818–2820.

    下載圖示 校內:2009-08-18公開
    校外:2010-08-18公開
    QR CODE