| 研究生: |
吳東穎 Wu, Dong-Ying |
|---|---|
| 論文名稱: |
應用於車體防翻覆之飛輪模組設計與初步驗證 Design and Preliminary Verification of Flywheel Module Against Vehicle Rollover |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 246 |
| 中文關鍵詞: | 飛輪電池 、陀螺效應 、車體防翻覆 、模糊邏輯演算法 、滑動模式控制 、硬體迴路 |
| 外文關鍵詞: | Flywheel Cell, Gyroscopic Effect, Anti-Rollover Control Strategy, Hardware-in-the-Loop |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以驗證飛輪電池應用於車體的防翻覆之可行性為目的,設計並製作ㄧ組實驗平台進行初步驗證,實驗平台為車輛包含車載飛輪之尺寸縮小版雛型架構,總共可分為三層。 三層結構由內而外層層包覆,內層結構的運動不會影響外層結構的運動,而外層結構的運動會帶動所有內層結構沿其中一個自由度方向運動(泛指線性移動或轉動)。 此外,為了使飛輪轉子在運轉時更加穩定、減少噪聲及增加運轉時間,本研究額外針對飛輪轉子進行動平衡校正,由校正結果可發現其動平衡之有效性。
另一方面,本研究針對內嵌於車子的飛輪轉子對(Flyeheel Rotor Pair, FRP)進行動態模型(Dynamic Model)建立,並藉由Matlab/Simulink軟體,模擬及分析飛輪轉子因陀螺效應對車體動態之影響性,其中包含了開迴路測試及閉迴路控制策略設計。 由開迴路測試的結果可知,若要使車子達到最大的防翻覆效能,FRP勢必要保持在最大的轉速差,如此FRP就只能在固定的轉速下運轉,將會失去原有的電池角色。 為了讓飛輪電池能有效地達成防翻覆及充放電之功能,本文額外設計ㄧ防翻覆控制策略(Anti-Rollover Control Strategy, ARCS),使其能根據車子的行車狀態,在適當的時機點才做出防翻覆的措施。
為了驗證“飛輪電池應用於車體的防翻覆”及“本文所設計的控制策略”之可行性,本研究搭建了兩種實驗: (I). 陀螺效應實驗; (II). 硬體迴路 (Hardware-in-the-Loop, HIL)實驗。 在陀螺效應實驗中,是以人為操作的方式,給予實驗平台一偏航角速度,並藉此觀察實驗平台的側傾方向,以驗證其側傾方向將與車子的翻覆方向相反,進而達到防翻覆的效能。 而在HIL實驗中,將本研究所設計的控制策略實際燒入至嵌入式控制器(Embedded Controller),並以控制器區域網路(Controller Area Network, CAN)及RS-485來進行資料的傳遞與溝通。 此外,實驗中亦加入了踏板及方向盤模組,並藉由人為的方式進行操作,使其更加貼近現實世界的駕駛行為。 由實驗結果可知,本研究所設計的控制策略確實可以即時(Real-time)安全化司機的駕駛行為。
This thesis is aimed to apply Flywheel Rotor Pair (FRP) for vehicle rollover prevention. FRP is a pair of rotors which rotates in opposite directions and is embedded in a Sport Utility Vehicle (SUV). The authors proposed a new method against vehicle rollover by taking advantage of gyroscopic effect. In addition, an Anti-Rollover Control Strategy (ARCS) is introduced as well. At design stage, modeling of vehicle dynamics and the control strategy are developed and verified under the computer environment: Matlab/Simulink. To be more practical, two kinds of experiments are conducted, namely, gyroscopic effect experiments and Hardware-in-the-Loop (HIL) experiments. To examine the gyroscopic moment induced by FRP being able to resist vehicle rollover, a test rig equipped with FRP is set up to imitate a size-reduced SUV to which FRP is embedded. On the other hand, to evaluate the performance of ARCS, the proposed control strategy is converted into “C code” and lodged onto a micro-processor chip to conduct the so-called HIL experiments. According to the experimental results, the gyroscopic moment induced by FRP can indeed prevent the vehicle from rollover and ARCS can secure, to some extent, drivers against improper driving behaviors.
[1] 高宜凡. (2017). 「低碳交通」系列一:台灣運輸耗能&排碳大體檢!. Available: http://lowestc.blogspot.com/2017/10/blog-post.html
[2] Grand View Reasearch. (2016). Flywheel energy storage market analysis by application (UPS, distributed energy generation, transport, data centers) and segment forecasts to 2024. Available: https://www.grandviewresearch.com/industry-analysis/flywheel-energy-storage-market
[3] M. H. Gottfried, "Flywheel device for a moving vehicle," Patent US4498015A, 1985.
[4] C. W. H. Ellis and J. H. Stoffer, "Kinetic energy storage system," Patent US5931249A, 1999.
[5] D. Bakholdin, R. W. Bosley, H. A. Rosen, C. C. Pearson, and S. B. Pano, "Hub and cylinder design for flywheel system for mobile energy storage," Patent US6175172B1, 2001.
[6] B. Bolund, H. Bernhoff, and M. Leijon, "Flywheel energy and power storage systems," Renewable and Sustainable Energy Reviews, vol. 11, no. 2, pp. 235-258, 2007.
[7] 康龍雲, 李海濱, and 曹秉剛, "一種懸浮飛輪電池," Patent CN1253990C, 2003.
[8] M. S. Kumar, "Rotor dynamic analysis using ANSYS," in IUTAM Symposium on Emerging Trends in Rotor Dynamics, 2011, pp. 153-162: Springer.
[9] Y. G. Chen and N. C. Tsai, "Dynamics and control of maglev flexible rotors under axial compression," 2007.
[10] 王正, 轉動機械的轉子動力學設計. 北京: 清華大學出版社, 2015.
[11] I. Balancing, "Balance quality requirements of rigid rotors: the practical application of ISO 1940/1," 2001.
[12] I. Standard, "Mechanical vibration-balance quality requirements of rigid rotors," Part I: Determination of Permissible Residual Unbalance, 1998.
[13] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011.
[14] F. P. Beer, E. R. Johnston Jr, D. F. Mazurek, P. J. Cornwell, E. R. Eisenberg, and S. Sanghi, Vector mechanics for engineers. Tata McGraw-Hill Education, 1972.
[15] H. Liu and J. Jiang, "Flywheel energy storage—An upswing technology for energy sustainability," Energy and Buildings, vol. 39, no. 5, pp. 599-604, 2007.
[16] D. Katzourakis, J. C. de Winter, S. de Groot, and R. Happee, "Driving simulator parameterization using double-lane change steering metrics as recorded on five modern cars," Simulation Modelling Practice and Theory, vol. 26, pp. 96-112, 2012.
[17] S. Solmaz, M. Corless, and R. Shorten, "A methodology for the design of robust rollover prevention controllers for automotive vehicles: part 1-differential braking," in Decision and Control, 2006 45th IEEE Conference on, 2006, pp. 1739-1744: IEEE.
[18] S. Solmaz, M. Corless, and R. Shorten, "A methodology for the design of robust rollover prevention controllers for automotive vehicles: part 2-active steering," in American Control Conference, 2007. ACC'07, 2007, pp. 1606-1611: IEEE.
[19] M. Hedlund, J. Lundin, J. de Santiago, J. Abrahamsson, and H. Bernhoff, "Flywheel energy storage for automotive applications," Energies, vol. 8, no. 10, pp. 10636-10663, 2015.
[20] B.-C. Chen and H. Peng, "Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations," Vehicle System Dynamics, vol. 36, no. 4-5, pp. 359-389, 2001.
[21] S. Yim, K. Jeon, and K. Yi, "An investigation into vehicle rollover prevention by coordinated control of active anti-roll bar and electronic stability program," International Journal of Control, Automation and Systems, vol. 10, no. 2, pp. 275-287, 2012.
[22] 王文俊, 認識 Fuzzy. 全華科技圖書股份有限公司, 2005.
[23] 林俊良, 智慧型控制分析與設計. 全華科技圖書股份有限公司, 2005.
[24] J.-J. E. Slotine and W. Li, Applied nonlinear control (no. 1). Prentice hall Englewood Cliffs, NJ, 1991.
[25] C. Edwards and S. Spurgeon, Sliding mode control: theory and applications. Crc Press, 1998.
校內:2021-07-20公開