簡易檢索 / 詳目顯示

研究生: 劉席羽
Liu, Hsi-Yu
論文名稱: 肺癌細胞癌化過程中細胞自噬、Sec22b及VAMP8在Rab37主導 之腫瘤抑制分子TIMP1分泌之角色
The role of autophagy, Sec22b, and VAMP8 in Rab37-mediated secretion of tumor suppressor TIMP1 in lung cancer tumorigenesis
指導教授: 劉校生
Liu, Hsiao-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 58
中文關鍵詞: 細胞自噬Sec22bVAMP8Rab37TIMP1
外文關鍵詞: Autophagy, Sec22b, VAMP8, Rab37, TIMP1
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Rab家族是小分子的GTP的分解酶,已知活化態Rab37主導TIMP1(tissue inhibitor of metalloproteinase 1)的釋放,以抑制細胞外MMP9 (matrix metalloproteinase 9)的活性,而降低肺癌細胞的行動力。此外IL-1可以藉由細胞自噬(autophagy)的非傳統路徑被釋放,而Sec22b參與在此釋放過程中, Sec22b蛋白是胞器運輸相關syntaxin5 SNARE複合體之一員,為清除胞自噬小體內(autophagosome)物質所必需。本實驗室蛋白質體分析後揭示Rab37及Sec22b二蛋白都包含在表現活化態Rab37肺癌細胞(CL1-5 Q89L)之自噬小體中,顯示此二蛋白均參與在細胞自噬的過程。已知另一個SNARE蛋白成員VAMP8參與細胞自噬的過程中並為活化態Rab37可能之執行蛋白 (effector)。本研究擬釐清自噬反應是否經由Sec22b及VAMP8參與Rab37主導的TIMP1分泌及癌化現象。首先,我們純化出H460肺癌細胞之自噬小體,並發現Sec22b、Rab37、VAMP8及TIMP1都存在於自噬小體中,顯示自噬作用、Sec22b及VAMP8參與Rab37主導之TIMP1分泌過程中。然而,在H460肺癌細胞中當Rab37蛋白之表現被抑制時,飢餓 (starvation)之刺激無法促進TIMP1及LC3蛋白之共位 (colocalization)及TIMP1之釋放,顯示Rab37主導TIMP1之分泌。至於自噬作用是否會影響Sec22b及VAMP8之表達,結果顯示自噬反應不影響Sec22b的表現量,但抑制自噬反應會降低VAMP8的表現量及TIMP1的釋放量。藉由共軛焦顯微鏡觀察發現飢餓刺激活化Rab37並促進自噬反應時,胞內之Sec22b及Rab37與LC3以及Rab37與VAMP8均形成更多的共位現象,而Sec22b及Rab37的共位現象廣泛存在細胞質中但不受飢餓處理的影響,以上之結果推論Sec22b及Rab37可能位於同一胞器上,而在飢餓情況下會促進Sec22b-Rab37胞器與自噬小體以及Rab37之胞器與溶酶體(lysosome)的接觸。當抑制Sec22b之表現量時,Rab37及LC3的共位顯著的下降,伴隨著LC3 II表現量及TIMP1分泌量下降,以及促進肺癌細胞之爬行及侵入能力,因此,我們推論Sec22b可能經由與自噬小體上的SNARE protein - Stx17的交互作用影響Rab37胞器及自噬小體之融合以及抑制肺癌細胞的移動。而抑制VAMP8之表現量則會促進肺癌細胞之增生、群落形成及侵入之能力。進一步觀察Sec22b蛋白及細胞自噬作用在肺癌病人檢體中的角色,結果顯示在腫瘤部分有較高比率之p62的累積(代表低自噬反應),同時p62累積與肺癌細胞轉移到臨近淋巴是有顯著相關性,而Sec22b低表現與癌症轉移相關,顯示低自噬反應及低Sec22b蛋白表現導致之低TIMP1釋放可能造成肺癌細胞轉移。總結之,本研究揭示Sec22b會促進Rab37胞器與自噬小體的融合,進而增進Rab37胞器在自噬反應的協助下釋放TIMP1,並抑制肺癌細胞之移動力。而VAMP8不會影響Rab37胞器與自噬小體的融合及TIMP1的釋放,但會降低自噬作用之降解能力,因而增強肺癌細胞致癌性。

    Rab37, a small GTPase, is known for the exocytosis of TIMP1 (tissue inhibitor of metalloproteinase 1) which leads to inhibition of MMP9 (matrix metalloproteinase 9) activity and decrease of cancer cell motility. Autophagy participates in IL-1secretion through an unconventional secretory pathway by which IL-1 was recruited to the LC3II protein containing vesicles mediated by Sec22b. Sec22b, a component of syntaxin5 SNARE complex, is responsible for vesicle transportation and the clearance of autophagic cargoes. We previously identified Rab37 and Sec22b proteins in the purified autophagosomes from lung cancer CL1-5 Q89L cells by proteomics analysis, indicating that these two proteins are involved in autophagic progression. Moreover, VAMP8, another SNARE protein and the effector of active form Rab37, is involved in autophagosome and lysosome fusion. Here, we clarified the roles of Sec22b and VAMP8 in autophagy as well as in Rab37-mediated TIMP1 secretion and tumorigenesis. We detected Sec22b, Rab37, VAMP8, and TIMP1 in the purified autophasosomes from lung cancer H460 cells, indicating that Sec22b and VAMP8 may participate in Rab37- mediated TIMP1 secretion through autophagy. However, we found that starvation treatment could not induce the colocalization of TIMP1 containing vesicles and autophagosomes when Rab37 was silenced, indicating Rab37 is the upstream regulator of TIMP1 secretion. We further reveal that autophagy has no effect on Sec22b expression. Differently, TIMP1 secretion was positively regulated by autophagic activity, and VAMP8 level fluctuated with LC3 II level. Image analyze reveal increased colocalization of Sec22b-LC3, Rab37-LC3 as well as VAMP8-Rab37 under starvation conditions. Colocalization of Sec22b and Rab37 was detected in the cytoplasm but not affected by starvation, indicating that Rab37 and Sec22b may anchor on the same vesicle in the cytoplasm. The colocalization of Sec22b-Rab37 vesicle and autophagosome and Rab37 vesicle and lysosome was increased by starvation. When Sec22b expression was silenced, LC3 II expression, TIMP1 secretion, and the colocalization of Rab37 and LC3 decreased. It indicates that the fusion of Rab37 anchored vesicle with autophagosome is affected by Sec22b through Stx17 which anchored on autophagosome and Sec22b interaction. Functional analysis reveal that Sec22b has negative effect on cell motility, and VAMP8 shows suppressive effect on cell proliferation, colony formation and cell motility. Analysis of lung cancer patient specimens reveals high percentage of p62 accumulation (representing low autophagic activity) in the tumor parts and correlation with lung cancer tumor spreading to regional lymph nodes (N stage). Low expression of Sec22b correlates with cell metastasis (M stage) of lung cancer patients. In conclusion, we disclose that colocalization of Rab37 anchored vesicles with autophagosome, TIMP1 secretion, and cell motility are affected by Sec22b. But, colocalization of Rab37 anchored vesicles with autophagosome and TIMP1 secretion are not affected by VAMP8. VAMP8 suppresses cell proliferation and colony formation.

    中文摘要 I ABSTRACT III 致謝 V ABBREVIATION IX INTRODUCTION 1 I. Lung cancer 1 II. Autophagy 1 III. Autophagy and lung cancer 3 IV. SNARE proteins 4 V. SNARE proteins and autophagy 5 VI. Rab37 and lung cancer 6 VII. TIMP1 and cancer 7 MATERIALS and METHODS 8 I. Cell lines and cell culture 8 II. Tissue specimens 8 III. Western blot analysis and coomassie blue staining 9 IV. Enzyme-linked immunosorbent assay (ELISA) 10 V. Autophagosome purification 10 VI. MTT assay 10 VII. Colony formation 11 VIII.Cell migration and invasion assay 11 IX. Immunoflourescent staining 11 X. Co-immunoprecipitation assay 11 XI. Lactate dehydrogenase (LDH) assay 12 XII. Immunohistochemical staining 12 XIII.Statistical analysis 12 RESULTS 14 I. Selection of a cell line model 14 II. The effect of starvation on TIMP1 secretion 14 III. The proteins detected in the autophagosomes of H460 cells 14 IV. The role of Rab37 on Sec22b and VAMP8 expression and distribution 15 V. The effect of autophagy on Sec22b, Rab37, VAMP8 protein expression and TIMP1 secretion in lung cancer H460 cells 15 VI. Colocalization of Rab37, LC3, Sec22b and VAMP8 proteins in lung cancer H460 cells under normal and starvation conditions 16 VII. The effect of Sec22b on autophagy and Rab37-mediated TIMP1 secretion and tumorigenesis 16 VIII.The effect of VAMP8 on autophagy and Rab37-mediated TIMP1 secretion and tumorigenesis 17 IX. The interaction between Sec22b and Stx17 18 X. The effect of starvation on different H460 cell lines 19 XI. The role of autophagy and Sec22b in clinical lung cancer specimens 19 DISCUSSION 21 REFERENCES 25 Table Table 1. Cross-table analysis among multiple clinical parameters and the protein levels of p62 and Sec22b by SPSS(a statistic software). 32 Figure Figure 1. The protein levels of Rab37, LC3, VAMP8, Sec22b, and secreted TIMP1 in three lung cancer cell lines were investigated by Western blottig. 33 Figure 2. The protein level of secreted TIMP1 in lung cancer H460 cells were investigated by ELISA. 34 Figure 3. The autophagosomes were purified from starved H460 cells. 35 Figure 4. The effect of Rab37 on Sec22b and VAMP8 expression and distribution in lung cancer H460 cells under starvation conditions 37 Figure 5. The effect of autophagy on Sec22b, Rab37, and VAMP8 expression and TIMP1 secretion in lung cancer H460 cells. 40 Figure 6. Colocalization of Sec22b, LC3, Rab37, and VAMP8 in lung cancer H460 cell under confocal microscopy. 43 Figure 7. The effect of Sec22b on Rab37 and autophagy-mediated TIMP1 secretion and tumorigenesis in H460 cells. 47 Figure 8. The effect of VAMP8 on Rab37 and autophagy-mediated TIMP1 secretion and tumorigenesis by CRISPR-Cas9 knock-out system. 51 Figure 9. The major interaction of Sec22b and Stx17 by immunoprecipitation followed by Western blotting 53 Figure 10. The effect of starvation on H460 cell lines 54 Figure 11. The level of p62 accumulation and Sec22b level in clinical lung cancer specimens by IHC and on-line database analysis. 57 Figure 12. Schematic diagram of the current hypothesis of autophagy participating in exocytosis of TIMP1 through Rab37-mediated vesicle trafficking. 58

    1 Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. & Forman, D. Global cancer statistics. CA Cancer J Clin 61, 69-90 (2011).
    2 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin 67, 7-30, doi:10.3322/caac.21387 (2017).
    3 Liu, G., Pei, F., Yang, F., Li, L., Amin, A. D., Liu, S., Buchan, J. R. & Cho, W. C. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci 18, 367 (2017).
    4 Marinković, M., Šprung, M., Buljubašić, M. & Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid Med Cell Longev 2018 (2018).
    5 Neal, R. D., Hamilton, W. & Rogers, T. K. EASILY MISSED? bmj 349, g6075 (2014).
    6 Mizushima, N. Autophagy: process and function. Genes Dev 21, 2861-2873 (2007).
    7 Lan, S. H., Wu, S. Y., Zuchini, R., Lin, X. Z., Su, I. J., Tsai, T. F., Lin, Y. J., Wu, C. T. & Liu, H. S. Autophagy suppresses tumorigenesis of hepatitis B virus‐associated hepatocellular carcinoma through degradation of microRNA‐224. Hepatology 59, 505-517 (2014).
    8 Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S.-i., Natsume, T., Takehana, K. & Yamada, N. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20, 1981-1991 (2009).
    9 Kang, R., Zeh, H., Lotze, M. & Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18, 571 (2011).
    10 Reggiori, F., Tucker, K. A., Stromhaug, P. E. & Klionsky, D. J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6, 79-90 (2004).
    11 Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Mol Cell 40, 280-293 (2010).
    12 Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313-326 (2010).
    13 Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., Yang, C. & Liu, H. F. p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21, 29 (2016).
    14 Lin, X., Li, S., Zhao, Y., Ma, X., Zhang, K., He, X. & Wang, Z. Interaction domains of p62: a bridge between p62 and selective autophagy. DNA Cell Biol 32, 220-227 (2013).
    15 Wu, S. Y., Lan, S. H., Wu, S. R., Chiu, Y. C., Lin, X. Z., Su, I. J., Tsai, T. F., Yen, C. J., Lu, T. H. & Liang, F. W. Hepatocellular carcinoma‐related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology (2018).
    16 Wu, S.-Y., Lan, S.-H., Cheng, D.-E., Chen, W.-K., Shen, C.-H., Lee, Y.-R., Zuchini, R. & Liu, H.-S. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 13, IN22-IN28 (2011).
    17 Deretic, V., Jiang, S. & Dupont, N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 22, 397-406 (2012).
    18 Duran, J. M., Anjard, C., Stefan, C., Loomis, W. F. & Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol, jcb. 200911154 (2010).
    19 Rabouille, C. Pathways of unconventional protein secretion. Trends Cell Biol 27, 230-240 (2017).
    20 Andrei, C., Dazzi, C., Lotti, L., Torrisi, M. R., Chimini, G. & Rubartelli, A. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 10, 1463-1475 (1999).
    21 Monteleone, M., Stow, J. L. & Schroder, K. Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine 74, 213-218 (2015).
    22 Zhang, M., Kenny, S. J., Ge, L., Xu, K. & Schekman, R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. Elife 4 (2015).
    23 Ponpuak, M., Mandell, M. A., Kimura, T., Chauhan, S., Cleyrat, C. & Deretic, V. Secretory autophagy. Curr Opin Cell Biol 35, 106-116 (2015).
    24 Dupont, N., Jiang, S., Pilli, M., Ornatowski, W., Bhattacharya, D. & Deretic, V. Autophagy‐based unconventional secretory pathway for extracellular delivery of IL‐1β. EMBO J 30, 4701-4711 (2011).
    25 Harris, J., Hartman, M., Roche, C., Zeng, S. G., O'Shea, A., Sharp, F. A., Lambe, E. M., Creagh, E. M., Golenbock, D. T. & Tschopp, J. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J Biol Chem 286, 9587-9597 (2011).
    26 Karsli-Uzunbas, G., Guo, J. Y., Price, S., Teng, X., Laddha, S. V., Khor, S., Kalaany, N. Y., Jacks, T., Chan, C. S. & Rabinowitz, J. D. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4, 914-927 (2014).
    27 Rao, S., Tortola, L., Perlot, T., Wirnsberger, G., Novatchkova, M., Nitsch, R., Sykacek, P., Frank, L., Schramek, D. & Komnenovic, V. A dual role for autophagy in a murine model of lung cancer. Nat Commun 5, 3056 (2014).
    28 Strohecker, A. M., Guo, J. Y., Karsli-Uzunbas, G., Price, S. M., Chen, G. J., Mathew, R., McMahon, M. & White, E. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumors. Cancer Discov 3, 1272-1285 (2013).
    29 Deretic, V. Autophagy in immunity and cell‐autonomous defense against intracellular microbes. Immunol Rev 240, 92-104 (2011).
    30 Fasshauer, D., Sutton, R. B., Brunger, A. T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. P Natl Acad Sci USA 95, 15781-15786 (1998).
    31 Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347 (1998).
    32 Jahn, R. & Scheller, R. H. SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7, 631 (2006).
    33 S llner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409-418 (1993).
    34 Nair, U., Jotwani, A., Geng, J., Gammoh, N., Richerson, D., Yen, W.-L., Griffith, J., Nag, S., Wang, K. & Moss, T. SNARE proteins are required for macroautophagy. Cell 146, 290-302 (2011).
    35 Moreau, K. & Rubinsztein, D. C. The plasma membrane as a control center for autophagy. Autophagy 8, 861-863 (2012).
    36 Moreau, K., Ravikumar, B., Renna, M., Puri, C. & Rubinsztein, D. C. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303-317 (2011).
    37 Moreau, K., Renna, M. & Rubinsztein, D. C. Connections between SNAREs and autophagy. Trends in Biochem Sci 38, 57-63 (2013).
    38 Jiang, P., Nishimura, T., Sakamaki, Y., Itakura, E., Hatta, T., Natsume, T. & Mizushima, N. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25, 1327-1337 (2014).
    39 Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269 (2012).
    40 Hubert, V., Peschel, A., Langer, B., Gröger, M., Rees, A. & Kain, R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol Open 5, 1516-1529 (2016).
    41 Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: fusion and function. Nature reviews Mol Cell Biol 8, 622 (2007).
    42 Furuta, N., Fujita, N., Noda, T., Yoshimori, T. & Amano, A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell 21, 1001-1010 (2010).
    43 Pryor, P. R., Mullock, B. M., Bright, N. A., Lindsay, M. R., Gray, S. R., Richardson, S. C., Stewart, A., James, D. E., Piper, R. C. & Luzio, J. P. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep 5, 590-595 (2004).
    44 Jean, S., Cox, S., Nassari, S. & Kiger, A. A. Starvation‐induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome–lysosome fusion. EMBO Rep, e201439464 (2015).
    45 Kimura, T., Jia, J., Kumar, S., Choi, S. W., Gu, Y., Mudd, M., Dupont, N., Jiang, S., Peters, R. & Farzam, F. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J 36, 42-60 (2017).
    46 Szatmári, Z. & Sass, M. The autophagic roles of Rab small GTPases and their upstream regulators: a review. Autophagy 10, 1154-1166 (2014).
    47 Carlos Martín Zoppino, F., Damián Militello, R., Slavin, I., Álvarez, C. & Colombo, M. I. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 11, 1246-1261 (2010).
    48 Lipatova, Z., Belogortseva, N., Zhang, X. Q., Kim, J., Taussig, D. & Segev, N. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. P Natl Acad Sci USA 109, 6981-6986 (2012).
    49 Yen, W.-L., Shintani, T., Nair, U., Cao, Y., Richardson, B. C., Li, Z., Hughson, F. M., Baba, M. & Klionsky, D. J. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 188, 101-114 (2010).
    50 Li, L., Kim, E., Yuan, H., Inoki, K., Goraksha-Hicks, P., Schiesher, R. L., Neufeld, T. P. & Guan, K.-L. Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem 285, 19705-19709 (2010).
    51 Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C. J. & Rubinsztein, D. C. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121, 1649-1660 (2008).
    52 Dou, Z., Pan, J.-A., Dbouk, H. A., Ballou, L. M., DeLeon, J. L., Fan, Y., Chen, J.-S., Liang, Z., Li, G. & Backer, J. M. Class IA PI3K p110β subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol Cell 50, 29-42 (2013).
    53 Bains, M., Zaegel, V., Mize-Berge, J. & Heidenreich, K. A. IGF-I stimulates Rab7-RILP interaction during neuronal autophagy. Neurosci Lett 488, 112-117 (2011).
    54 Lin, W.-J., Yang, C.-Y., Li, L.-L., Yi, Y.-H., Chen, K.-W., Lin, Y.-C., Liu, C.-C. & Lin, C.-H. Lysosomal targeting of phafin1 mediated by Rab7 induces autophagosome formation. Biochem Bioph Res Co 417, 35-42 (2012).
    55 Hyttinen, J. M., Niittykoski, M., Salminen, A. & Kaarniranta, K. Maturation of autophagosomes and endosomes: a key role for Rab7. BBA-Mol Cell Res 1833, 503-510 (2013).
    56 Munafó, D. B. & Colombo, M. I. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP‐Rab24. Traffic 3, 472-482 (2002).
    57 Hirota, Y. & Tanaka, Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 66, 2913-2932 (2009).
    58 Wang, C., Liu, Z. & Huang, X. Rab32 is important for autophagy and lipid storage in Drosophila. PLoS One 7, e32086 (2012).
    59 Tsai, C.-H., Cheng, H.-C., Wang, Y.-S., Lin, P., Jen, J., Kuo, I.-Y., Chang, Y.-H., Liao, P.-C., Chen, R.-H. & Yuan, W.-C. Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat commun 5, ncomms5804 (2014).
    60 Mori, R., Ikematsu, K., Kitaguchi, T., Kim, S. E., Okamoto, M., Chiba, T., Miyawaki, A., Shimokawa, I. & Tsuboi, T. Release of TNF‐α from macrophages is mediated by small GTPase Rab37. Eur J Immunol 41, 3230-3239 (2011).
    61 Masuda, E. S., Luo, Y., Young, C., Shen, M., Rossi, A. B., Huang, B. C., Yu, S., Bennett, M. K., Payan, D. G. & Scheller, R. H. Rab37 is a novel mast cell specific GTPase localized to secretory granules. FEBS letters 470, 61-64 (2000).
    62 Gardner, J. & Ghorpade, A. Tissue inhibitor of metalloproteinase (TIMP)‐1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J Neurosci Res 74, 801-806 (2003).
    63 Gomez, D., Alonso, D., Yoshiji, H. & Thorgeirsson, U. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74, 111-122 (1997).
    64 Bloomston, M., Shafii, A., Zervos, E. E. & Rosemurgy, A. S. TIMP-1 overexpression in pancreatic cancer attenuates tumor growth, decreases implantation and metastasis, and inhibits angiogenesis. J Surg Res 102, 39-44 (2002).
    65 Kraya, A. A., Piao, S., Xu, X., Zhang, G., Herlyn, M., Gimotty, P., Levine, B., Amaravadi, R. K. & Speicher, D. W. Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy 11, 60-74 (2015).
    66 Seglen, P. O. & Brinchmann, M. F. Purification of autophagosomes from rat hepatocytes. Autophagy 6, 542-547 (2010).
    67 Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27, 107-132 (2011).
    68 Jacomin, A.-C., Samavedam, S., Promponas, V. & Nezis, I. P. iLIR database: A web resource for LIR motif-containing proteins in eukaryotes. Autophagy 12, 1945-1953 (2016).
    69 Dascher, C. & Balch, W. E. Mammalian Sly1 regulates syntaxin 5 function in endoplasmic reticulum to Golgi transport. J Biol Chem 271, 15866-15869 (1996).
    70 Hay, J. C., Chao, D. S., Kuo, C. S. & Scheller, R. H. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89, 149-158 (1997).
    71 Zhang, T., Wong, S. H., Tang, B. L., Xu, Y. & Hong, W. Morphological and functional association of Sec22b/ERS-24 with the pre-Golgi intermediate compartment. Mol Biol Cell 10, 435-453 (1999).
    72 Renna, M., Schaffner, C., Winslow, A. R., Menzies, F. M., Peden, A. A., Floto, R. A. & Rubinsztein, D. C. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J Cell Sci 124, 469-482 (2011).
    73 Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Yoshimori, T., Noda, T. & Ohsumi, Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12, 3690-3702 (2001).
    74 He, C. & Klionsky, D. J. Atg9 trafficking in autophagy-related pathways. Autophagy 3, 271-274 (2007).
    75 Yamamoto, H., Kakuta, S., Watanabe, T. M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M. & Ohsumi, Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198, 219-233 (2012).
    76 Arango Duque, G., Dion, R., Descoteaux, J. & Descoteaux, A. The ERGIC-resident SNARE Sec22b regulates nitric oxide and cytokine production in dendritic cells.
    77 Cebrian, I., Visentin, G., Blanchard, N., Jouve, M., Bobard, A., Moita, C., Enninga, J., Moita, L. F., Amigorena, S. & Savina, A. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147, 1355-1368 (2011).
    78 Adiko, A. C., Babdor, J., Gutiérrez-Martínez, E., Guermonprez, P. & Saveanu, L. Intracellular transport routes for MHC I and their relevance for antigen cross-presentation. Front Immunol 6, 335 (2015).
    79 Blander, J. M. The comings and goings of MHC class I molecules herald a new dawn in cross‐presentation. Immunol Rev 272, 65-79 (2016).
    80 Nair-Gupta, P., Baccarini, A., Tung, N., Seyffer, F., Florey, O., Huang, Y., Banerjee, M., Overholtzer, M., Roche, P. A. & Tampé, R. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506-521 (2014).
    81 Wu, S. J., Niknafs, Y. S., Kim, S. H., Oravecz-Wilson, K., Zajac, C., Toubai, T., Sun, Y., Prasad, J., Peltier, D. & Fujiwara, H. A critical analysis of the role of SNARE protein SEC22B in antigen cross-presentation. Cell Rep 19, 2645-2656 (2017).
    82 Alloatti, A., Rookhuizen, D. C., Joannas, L., Carpier, J.-M., Iborra, S., Magalhaes, J. G., Yatim, N., Kozik, P., Sancho, D. & Albert, M. L. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med 214, 2231-2241 (2017).
    83 Matsui, T., Jiang, P., Nakano, S., Sakamaki, Y., Yamamoto, H. & Mizushima, N. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol, jcb. 201712058 (2018).
    84 Chen, Y., Meng, D., Wang, H., Sun, R., Wang, D., Wang, S., Fan, J., Zhao, Y., Wang, J. & Yang, S. VAMP8 facilitates cellular proliferation and temozolomide resistance in human glioma cells. Neuro-oncology 17, 407-418 (2014).
    85 Ho, Y. H. S., Cai, D. T., Huang, D., Wang, C. C. & Wong, S. H. Caspases regulate VAMP-8 expression and phagocytosis in dendritic cells. Biochem Bioph Res Co 387, 371-375 (2009).
    86 Tsapras, P. & Nezis, I. P. Caspase involvement in autophagy. Cell Death Differ 24, 1369 (2017).
    87 Wu, H., Che, X., Zheng, Q., Wu, A., Pan, K., Shao, A., Wu, Q., Zhang, J. & Hong, Y. Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 10, 1072 (2014).
    88 Shalini, S., Dorstyn, L., Dawar, S. & Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ 22, 526 (2015).
    89 Sun, Q., Gao, W., Loughran, P., Shapiro, R., Fan, J., Billiar, T. R. & Scott, M. J. Caspase-1 activation is protective against hepatocyte cell death by up-regulating beclin1 and mitochondrial autophagy in the setting of redox stress. J Biol Chem, jbc. M112. 426791 (2013).
    90 Han, J., Hou, W., Goldstein, L. A., Stolz, D. B., Watkins, S. C. & Rabinowich, H. A complex between Atg7 and caspase-9: a novel mechanism of cross-regulation between autophagy and apoptosis. J Biol Chem, jbc. M113. 536854 (2013).
    91 Liu, R., Zhi, X. & Zhong, Q. ATG14 controls SNARE-mediated autophagosome fusion with a lysosome. Autophagy 11, 847-849 (2015).
    92 Diao, J., Liu, R., Rong, Y., Zhao, M., Zhang, J., Lai, Y., Zhou, Q., Wilz, L. M., Li, J. & Vivona, S. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563 (2015).

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE