| 研究生: |
劉晉維 Liu, Chin-Wei |
|---|---|
| 論文名稱: |
可促進親和性感測進行的介電濕潤驅動微流體晶片開發 An Affinity Sensor Improved by EWOD Actuator-based Microfluidic Chip |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 電阻抗分析 、蛋白質A 、交流電滲流 、介電濕潤 |
| 外文關鍵詞: | Electro-chemical impedance spectroscopy, Protein A, AC electroosmosis, Electro-wetting on dielectric (EWOD) |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
某些特定蛋白質常是臨床上檢驗與疾病判定的指標,而藉由抗原抗體間高度的專一性結合反應,再搭配標的性或非標的性的第二抗體,所形成的親和性免疫分析法,遂得以將待測物濃度定量。但這些以精密光學儀器為基礎的檢驗設備,本身雖已有價格昂貴、操作繁瑣耗時的問題,卻也常出現有偽陰性等之缺點。在這檢測過程中,各反應步驟後對未接合上的物質之沖洗,其沖洗勁道被視為造成此問題的核心。基於此,本研究設計以微機電技術,製作一種由修飾有(1)介電層之串聯式電極組成的電濕潤(Electrowetting; EWOD)操控,與(2) 抗體(IgG)的金電極之兩區塊所構成的微流體免疫晶片。前者藉由電極逐次的極化-非極化之操控,而迅速呈親、疏水性相鄰的兩區,終使含有檢體的水溶液被帶往感測區移動,而運送至後者的感測區之電極上。此區乃以單端含硫醇基之11-MUA的自組性單層膜(SAM)修飾於金電極後,以EDC/NHS活化其另一端之羧基之後,再導入IgG與其鍵結,沖洗去為鍵結上的IgG後,以小牛血清蛋白(BSA)填埋空位後,便可作為protein A的感測探針。此外,在(1)與(2)之交會處,特以氧電漿來製作一超親水流道,形成兩個親疏水性差異極大的表面,致使液滴被運送至此,即能自發性的移動到感測電極上,這也可運用成為親和反應後的沖洗電極之目的。另外,電極也於感測前被施予8 Vpp、500 Hz之電訊號處理,亦即藉由交流電滲流(ACEOF)的施加,液珠內產生渦流,而更促使了親和反應時間,從原本的需1小時縮減為50秒,即能達檢測之功效。經電化學阻抗分析結果可得知,電極表面上的阻抗變化量(ΔRet)對於含protein A溶液的濃度,在1-50 ng/ml具有良好線性相關。此微流體晶片系統未來可繼續探討更低極限之操作外,也將可朝數位系統化之多工性免疫檢測晶片目標邁進。
Some specific proteins existing and correlating with disease in the blood or the food, its concentration changes or structural change, is considered as the symbol of disease development. On clinic, immunoassay is applied to detect these substances and measure the antibody or antigen concentrations owing to their high bio-specific recognition interaction with their complementary target. In fact, the drawback of immune analytical instrument which based on optical method not only is high price and complicated operation, but false negative detection is often occurred. Among this, the fail in eluting processes for cleaning away the unbonding substances to be the main reason can be considered. To promote this, a microfluidic immuno-chip which is made by micro electro-mechanical technology and combining two zones that are modified (1) a series of insulator-coated electrodes as electro-wetting on dielectric (EWOD) construction and (2) a antibody (IgG) - modified gold electrode. The former is designed for creating a droplet containing target sample and transporting it in chip by EWOD. By stepwise operating the electrodes rapidly to be hydrophilic and hydrophobic, the sample was moved to the sensing zone. The later is for detecting the concentration of target sample based on measuring the extent of impedance change. The self-assembly monolayer, 11-MUA, possessing a thiol group in one side will spontaneously bind onto gold electrode and a carboxylic group in the other side was activated by the agents of EDC/NHS that may promote the bind with antibody through its amino group. After the blocking treatment with bovine albumin serum, this zone will be used as for detecting Protein A. we also treated the intersection of zone 1 and 2 by oxygen plasma to allow the sensing zone to be more hydrophilic that will spontaneously achieve movement and promote the feasibility in sample transportation and electrode elution. Moreover, AC eletroosmosis flow (ACEOF) was introduced by setting the sensing electrode at 8 Vpp with 500 Hz before detection that will reduce the time for affinity reaction dawn to be 50 sec from 1 hr. As a result, the resistance change (ΔRet) by electro-chemical impedance spectroscopy for detecting protein A showed a linear correlation in the range of 1-50 ng/ml. The microfluidic system can be systemized for multiplex immuno-detection chip in the future.
[1] A. Manz, N. Graber and H. M. Widmer, “Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing”, Sensors and Actuators B, 1, 244-248, 1990.
[2] R. Feynman, “There's Plenty of Room at the Bottom”, Journal of Micro Electro Mechanical Systems, 1, 60-66, 1992.
[3] R. Feynman, “Infinitesimal Machinery”, Journal of Micro Electro Mechanical Systems, 2, 4-14, 1993.
[4] Petra S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery ”, Nature Reviews Drug Discovery, 5, 210-218, 2006.
[5] R. B. Fair, M. G. Pollack, R. Woo, V. K. Pamula, R. Hong, T. Zhang, and J. Venkatraman, “A Micro-Watt Metal-Insulator-Solution- Transport (MIST) Device for Scalable Digital Bio-Microfluidic Systems”, Technical Digest - International Electron Devices Meeting, 367-370, 2001.
[6] F. Mugele and J. C. Baret, “Electrowetting: from basics to applications”, Journal of Physics: Condensed Matter, 17, 705-774, 2005.
[7] O. Sandre, L. Gorre- Talini, A. Ajdari, J. Prost, and P. Silberzan, “Moving droplets on asymmetrically structured surfaces”, Physical Review E, 60, 2964-2972, 1999.
[8] T. S. Sammarco and M. A. Burns, “Thermocapillary pumping of discrete droplets in microfabrication analysis devices”, AIChE Journal, 45, 350-366, 1999.
[9] M. Washizu, “Electrostatic actuation of liquid droplets for micro-reactor applications”, IEEE Transactions on Industry Applications , 34, 732-737, 1998.
[10] K. Ichimura, S. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface”, Science, 288, 1624-1626, 2000.
[11] http://en.wikipedia.org/wiki/Surface_tension
[12] 陳明宏、曾繁根,“數位化微流體操縱技術”,科學發展,405期,50-53,2006年9月。
[13] H. Moon, S. K. Cho, R. L. Garrell and C. J. Kim, “Low voltage electrowetting-on-dielectric”, Journal of Applied Physics, 92, 7, 4080-4087, 2002.
[14] S. K. Cho, S. K. Fan, H. Moon and C. J. Kim, “Toward Digital Microfluidics Circuits: Creating ,Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation”, The 16th IEEE Conference MEMS, 32-52, 2002.
[15] M. Scott, Karan V. I. S. Kaler and R. Paul, “Theoretical Model of Electrode Polarization and AC Electro-osmotic Fluid Flow in Planar Electrode Arrays”, Journal of Colloid and Interface Science, 238, 449-451, 2001.
[16] 張文正等,“免疫學”,合記圖書出版社,2001年
[17] http://en.wikipedia.org/wiki/ELISA
[18] E. Eteshola and D. Leckband, “Development and characterization of an ELISA assay in PDMS microfluidic channels”, Sensors and Actuators B, 72, 129-133, 2001
[19] N. Nashida, W. Satoh, J. Fukuda and H. Suzuki, “Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions”, Biosensors and Bioelectronics, 22, 3167-3173, 2007
[20] M. Herrmann, E. Roy, Teodor Veres and Maryam Tabrizian, “Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual network of channels”, Lab Chip, 7, 1546-1552, 2007
[21] H. J. Lee, T. Yasudawa, H. Shiku and T. Matsue, “Rapid and separation free sandwich immunosensing based on accumulation of microbeads by negative dielectrophoresis”, Biosensors and Bioelectronics, 24, 1006-1011, 2008
[22] S. K. Fan, H. P. Yang, T. T. Wang and W. Y. Hsu, “Asymmetric electrowetting-moving droplets by a square wave”, Lab Chip, 7, 1330-1335, 2007
[23] I. Moon, J. Kim, “Using EWOD (electrowetting-on- dielectric) actuation in a micro conveyor system”, Sensors and Actuators A, 130-131, 537-544, 2006
[24] D. Sehgal, I. K. Vijay, “A method for the high efficiency of water- soluble carbodiimide-mediated amidation”, Analytical Biochemistry, 218, 87-91, 1994
[25] 賴民峰,電阻抗分析於自組性單層薄膜之特性評估與其在生物檢測上之應用,國立成功大學醫學工程研究所碩士論文,2004