| 研究生: |
簡彰宏 Chien, Chang-Hung |
|---|---|
| 論文名稱: |
應用於高輸入電壓的柔性切換共振式轉換器之研製 Zero-voltage Switching Resonant Converters for High Input Voltage Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 197 |
| 中文關鍵詞: | 零電壓切換(ZVS) 、零電流切換(ZCS) 、柔性切換 、共振式轉換器 、電流分流 、串聯連接變壓器 、並聯連接變壓器 |
| 外文關鍵詞: | Zero-voltage switching (ZVS), Zero-current switching (ZCS), soft-switching, resonant converter, current sharing, series-connected transformers, parallel-connected transformers |
| 相關次數: | 點閱:145 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製三個應用於高輸入電壓480V~600V、24V/40A輸出之新型零電壓切換的共振式轉換器,三種電路架構於一次側採取二個輸入電容及二個串聯半橋臂疊接架構來使四個主動開關分別最大只需承受一半的輸入電壓即可,進而解決傳統LLC共振式轉換器與順向式轉換器功率開關至少需耐一倍以上的輸入電壓之限制,故文中提出三種電路皆適用於高輸入電壓應用;且電路中所有主動開關在任何負載及輸入電壓情況下皆可零電壓情況下切換導通,讓功率半導體元件切換損失減至最低,亦提高整體效率。
電路架構一與二,採取二個並聯對稱、開關觸發訊號為互補式的半橋共振式轉換器來傳送輸入功率,故可使輸入的電流平均分攤給二個並聯支路,讓兩共振式轉換器的切換開關、被動元件承受工作電流降至原本輸出瓦數之一半,更可使輸入端的電流漣波縮小,降低輸入電容值,所以對輸入的部分,即可順利降低功率主動開關與被動元件之耐流值及耐壓值,避免採用高規格成本的功率半導體元件,此外,更可使元件與電路的導通損失下降,且變壓器所需之磁性元件也可縮減,進一步克服傳統LLC共振式轉換器在高輸出功率時所面臨之課題。
於架構一電路中,採用變壓器一次側串聯、二次側並聯的連接方式;此方法可成功地確保平衡輸出端各支路的電流,更順利平均各整流二極體上的電流大小一致,所以元件上的耐流值能順利下降,也因導通損減少而提升電路整體效率至平均約90.5 % 以上,元件熱問題亦一併解決。
電路架構二,改採變壓器一次側、二次側皆串聯連接,進一步確保一次側、二次側各支路的電流平衡,實驗結果證實此種變壓器接法確實有助電流平均分流之效。另外,由於輸出端為串聯方式,讓原先需八個整流二極體之中間抽頭架構減至只需四個來取代即可,故,降低整流二極體的成本與數量,也達到希冀電路縮小化的目標,更使電路整體效率平均約88 % 以上。
再者,串疊二個(cascode)相同半橋架構的共振式轉換器方式來完成第三種研究電路,此方式是於各半橋架構的共振式轉換器中採取變壓器一次側串聯、二次側並聯的連接方法,然後再用交錯四分之一切換週期的訊號來分別控制兩個半橋電路,使輸入與輸出端的電流能交錯,讓輸入與輸出於電容上的電流漣波皆可下降,進而解決傳統LLC共振式轉換器高輸出電流漣波之難題。其次,一次側串聯方式讓各輸出端支路的電流平衡,而二次側並聯則使整流二極上的電流量下降,達成輸出分流及元件耐流減小之目標,故電路整體效率亦可達約92 % 以上。
另一方面,本論文研究之三種電路中,在變壓器二次側之整流元件所需之耐壓值皆約輸出電壓的二倍,所以不須如非對稱式半橋轉換器需求數倍於輸出電壓規格的耐壓整流二極體,進而減少整流元件的價格和電路成本。如為了避免二極體之反向再複合問題所造成之系統效率損失,亦可藉由設計電路切換頻率低於串聯共振頻率,就可達成整流二極體零電流截止之功效來消除反向再複合損失(二極體的相關切換損失)。最後本研究之電路適用於高壓輸入系統,如三相380V電源系統(three-phase 380V utility system)、船艦電源分佈系統(ship electric power distribution system)、伺服器電源系統(server power supply)、資料儲存電源系統(data storage system)、燃料電池系統(fuel cell system)…等。
In this dissertation, three novel zero-voltage switching resonant converters are proposed. The proposed converter 1 and converter 2 combine two parallel resonant converter cells by operating with an interleaved half switching cycle to allot the input current equally on active switches, and to mitigate the root-mean-square (rms) current on primary windings such that the copper losses of transformers and the size of the magnetic core are reduced. Using the complementary circuit modules to transport the energy lessens the ripple current on the input capacitor such that the capacitance is reduced. Therefore, those topologies defeat the high current stress of passive and active component disadvantage of formal LLC resonant converter for high power. By incorporating the two series half-bridge legs and two split capacitors to limit the stress voltage of active switches within a half input voltage, two high 480V to 600V input and 24V/40A output resonant converters for high input voltage applications are demonstrated. To balance the secondary winding currents and share the load currents, the series-parallel connected transformers are adopted in converter 1. Not only is the heat effectively relieved, but also is higher efficiency performed due to the less switching and conduction losses. Besides, the series–series connected transformers are adopted in converter 2 to balance the primary and secondary winding currents. Not only is the heat effectively relieved, but only four rectifier diodes are also used as replacement of the eight features in terms of low cost, small size, and light weight. The average active-mode efficiency of converter 1 and converter 2 are above 90.5 % and 88 %, respectively.
Moreover, a novel DC/DC converter with cascode two circuit modules for high input voltage application is researched in converter 3. The converter combines two series resonant converter cells by operating with an interleaved one-fourth switching cycle to allot the input current equally on active switches. Using the interleaved circuit modules to transport the energy lessens the ripple current on the input and output capacitors such that the capacitance is reduced. The primary windings of two transformers are connected in series to balance the secondary winding currents, and the secondary windings of two transformers are connected in parallel to reduce the current stresses on the secondary windings. The average active-mode efficiency is above 92 %.
On the other hand, the voltage stress of the rectifier diodes in those topologies are almost clamped to twice the output voltage, rather than being more than twice that of asymmetrical half-bridge converters. Thus, low voltage rating Schottky or ultra-fast diodes are used in the second side to reduce cost. To decrease the reverse recovery losses of rectifier diodes, the switching frequency at full load is designed to be lower than the series resonant frequency. The high input voltage applications include three-phase 380V utility system, ship electric power distribution system, server power supply, data storage system, and fuel cell system.
[1] D. Fu, Y. Liu, F. C. Lee, and M. Xu, “A novel driving scheme for synchronous rectifiers in LLC resonant converters,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1321–1329, May. 2009.
[2] B. R. Lin, J. Y. Dong and J. J. Chen, “Analysis and Implementation of a ZVS/ZCS DC–DC switching converter with voltage step-up,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2962–2971, Jul. 2011.
[3] S. S. Lee, S. W. Choi, and G. W. Moon, “High-efficiency active-clamp forward converter with transient current build-up (TCB) ZVS technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 310–318, Feb. 2007.
[4] Y. K. Lo, T. S. Kao, and J. Y. Lin, “Analysis and design of an interleaved active-clamping forward converter,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2323–2332, Jun. 2007.
[5] W. Chen, and X. Ruan, “Zero-voltage switching PWM hybrid full-bridge three-level converter with secondary-voltage clamping scheme,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 644–654, Feb. 2008.
[6] Y. K. Lo, C. Y. Lin, J. Y. Lin, and H. J. Chiu, “Analysis and design of a two-transformer active-clamping forward converter with parallel-connected current doubler rectifiers ,” Int. J. Circ. Theor. Appl., vol. 39, iss. 5, pp.501-514, May, 2011.
[7] B. R. Lin, K. Huang, and D. Wang, “Analysis, design, and implementation of an active clamp forward converter with synchronous rectifier,” IEEE Trans. Circuits Syst. Ι, Regular paper, vol. 53, no. 6, pp. 1310–1319, Jun. 2006.
[8] B. R. Lin, and C. L. Huang, “Interleaved ZVS converter with ripple-current cancellation,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1576–1585, Apr. 2008.
[9] B. R. Lin, and F. Y. Hsieh, “Soft-switching zeta-flyback converter with buck-boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2813–2822, Oct. 2007.
[10] T. Mishima, and M. Nakaoka, “A novel high-frequency transformer- linked soft-switching half-bridge DC-DC converter with constant- frequency asymmetrical PWM scheme,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 2961–2969, Aug. 2009.
[11] B. R. Lin, and C. H. Tseng, “Analysis of parallel-connected asymmetrical soft-switching converter,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1642–1653, Jun. 2007.
[12] B. Choi, W. Lim, S. Bang, and S. Choi, “Small-signal analysis and control design of asymmetrical half bridge DC-DC converters,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 511–520, Apr. 2006.
[13] Y. K. Lo, C. Y. Lin, M. T. Hsieh and C. Y. Lin, “Phase-shift full bridge series-resonant DC-DC converters for wide load variations,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2572–2575, Jun. 2011.
[14] J. Yungtack, M. M. Jovanovic, and Y. M. Chang, “A new ZVS-PWM full bridge converter,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1122–1129, Sep. 2003.
[15] X. Wu, X. Xie, C. Zhao, and Z. Qian, “Low voltage and current stress ZVZCS full bridge DC-DC converter using center tapped rectifier reset,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1470–1477, Mar. 2008.
[16] B. R. Lin, and J. Y. Dong, “ZVS resonant converter with parallel–series transformer connection,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2972–2979, Jul. 2011.
[17] Y. K. Lo, J. Y. Lin, and C. Y. Lin, “Analysis and design of a half-bridge LLC series resonant converter employing two transformers,” Int. J. Circ. Theor. Appl., vol. 40, iss. 10, pp. 985–998, Oct., 2012.
[18] C. H. Chien, and Y. H. Wang, “ZVS DC/DC converter with series half-bridge legs for high voltage application,” Int. J. Circ. Theor. Appl., vol. 41, iss. 4, pp. 369–386, Apr., 2013.
[19] B. R. Lin, and S. F. Wu, “ZVS resonant converter with series-connected transformers,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3547–3554, Aug. 2011.
[20] C. H. Chien, B. R. Lin, and Y. H. Wang, “Series resonant converter with series–parallel transformers for high input voltage application,” IEEE TENCON2011., Conf., pp. 873–877, Jan. 2012.
[21] B. C. Hyeon, and B. C. Cho, “Analysis and design of the LmC resonant converter for low output current couple,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2772–2780, Jul. 2012.
[22] B. R. Lin, and H. Y. Shih, “ZVS converter with parallel connection in primary side and series connection in secondary side,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1251–1258, Apr. 2011.
[23] S. H. Cho, C. S. Kim, and S. K. Han, “High-efficiency and low-cost tightly regulated dual-output LLC resonant converter,” IEEE Trans. Ind. Electron., vol. 598, no. 7, pp. 2982–2991, Jul. 2011.
[24] B. R. Lin, J. J. Chen and J. Y. Jhong, “Analysis and Implementation of a dual resonant converter,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2952–2961, Jul. 2011.
[25] K. H. Yi, and G. W. Moon, “Novel two-phase interleaved LLC series-resonant converter using a phase of the resonant capacitor,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1815–1819, May. 2009.
[26] F. D. Tan, “The forward converter: from the classic to the contemporary,” in Proc. 17th Annu. IEEE Appl. Power. Electron. Conf. and Expo., vol.1, pp. 857–863, 2002.
[27] A. K. S. Bhat, and F.D. Tan, “A unified approach to characterization of PWM and quasi-PWM switching converter: topological constraints, classification, and synthesis,” IEEE Trans. Power Electron., vol. 6, no. 4, pp. 719–726, Oct. 1991.
[28] L. D. Salazar, and P. D. Ziogas, “Design and evaluation of two types of controllers for a two-switch forward converter with extended duty cycle capability,” IEEE Trans. Ind. Electron., vol. 39, no. 2, pp. 128–140, Apr. 1992.
[29] M. B. Dakshina, and M. K. Kazimierczuk, “Two-switch flyback pwm dc-dc converter in discontinuous-conduction mode,” Int. J. Circ. Theor., Appl., vol. 39, iss. 8, pp. 849-864, Aug., 2011.
[30] M. B. Dakshina, and M. K. Kazimierczuk, “Two-switch flyback pwm dc-dc converter in continuous-conduction mode,” Int. J. Circ. Theor. Appl., vol. 39, iss. 11, pp. 1145-1160, Nov., 2011.
[31] C. H. Chien, Y. H. Wang, and B. R. Lin, “Zero-voltage switching DC/DC converter with two half-bridge legs and series-parallel transformers,” IET Power Electron., vol. 5, iss. 4, pp. 419–427, Apr. 2012.
[32] C. H. Chien, Y. H. Wang, B. R. Lin and C. H. Liu, “Implementation of an interleaved resonant converter for high-voltage applications,” IET Power Electron., vol. 5, iss. 4, pp. 447–455, Apr. 2012.
[33] R. W. Erickson, and D. MaksimoviĆ, “Fundamentals of power electronics,” Kluwer Academic Publishers, 2nd, pp. 703–800, 2001.
[34] B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system,” Ph. D. Dissertation., Virginia Polytechnic Institute and State University, pp. 94–186, Sep. 2003.
[35] H. S. Choi, “Half-bridge LLC resonant converter design using FSFR-series fairchild power switch (FPSTM),” Application Note AN-4151, Fairchild Semiconductor Corporation, pp. 1–17, Sep. 2007.
[36] M. K. Kazimierczuk, and D. Czarkowski, “Resonant power converters,” John Wiley & Sons, 2nd, pp. 143–458, 2011.
[37] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power electronics, converters, applications, and design,” John Wiley & Sons, 3rd, pp. 249–289, 2003.
[38] K. C. Wu, “Switch-mode power converters,” Elsevier Academic press, 1st , pp. 157–199, 2006.
[39] L. P. Wong, D. K.W. Cheng, M. H. L. Chow and Y. S. Lee, “Interleaved three-phase forward converter using integrated transformer,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1246–1260, Oct. 2005.
[40] X. Ruan, and B. Lie, “Zero-voltage and zero-current-switching PWM hybrid full-bridge three-level converter,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 213–220, Feb. 2005.
[41] K. Jin, and X. Ruan, “Hybrid full-bridge three-level LLC resonant converter-a novel DC-DC converter suitable for fuel-cell power system,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1492–1503, Oct. 2006.
[42] X. Ruan, B. Li, Q, Chen, S. C. Tan, and C. K. Tse, “Fundamental considerations of three-level DC-DC converters: topologies, analyses, and control,” IEEE Trans. Circuits Syst. Ι, Regular paper., vol. 55, no. 11, pp. 3733–3743, Dec. 2008.
[43] J. P. Rodrigues, S. A. Mussa, M. L. Heidwein, and A. J. Perin, “Three-level ZVS active clamping PWM for the DC-DC buck converter,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2249–2258, Dec. 2009.
[44] Y. Gu, Z. Lu, L. Hang, Z, Qian, and G. Huang, “Three-level LLC series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 781–789, Jul. 2005.
[45] J. P. Rodrigues, S. A. Mussa, I. Barbi, and A. J. Perin, “Three-level zero-voltage switching pulse-width modulation DC-DC boost converter with active clamping,” IET Power Electron., vol. 3, no. 3, pp. 345–354, May. 2010.
[46] B. R. Lin, and C. H. Chao, “Analysis and implementation of an interleaved ZVS converter with high input voltage,” Int. J. Circ. Theor. Appl., cta830, 2012.
[47] B. R. Lin, and C. H. Chao, “Soft switching converter with two series half-bridge legs to reduce voltage stress of active switches,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2214–2224, Jun. 2013.
[48] C. H. Chien, Y. H. Wang, and B. R. Lin, “Analysis of a novel resonant converter with series connected transformers,” IET Power Electron., vol. 6, iss. 3, pp. 611–623, Mar. 2013.
[49] B. R. Lin, C. H. Chao, C. H. Chien, and Y. H. Wang, “Analysis of a new soft switching converter with three resonant tanks,” IEEE PEDS 2013., Conf., pp. 411–416, Apr. 2013.
[50] Fairchild Semiconductor Corporation, “Secondary-side synchronous rectifier (SR) for LLC resonant converter using FAN6208,” Application Note AN-6208, Fairchild Semiconductor Corporation, pp. 1–10, Oct. 2011.
[51] R. L. Lin, and C. W. Lin, “Design criteria for resonant tank of LLC DC-DC resonant converter,” IEEE IECON 2010., Conf., pp. 427–432, Nov. 2010.
[52] R. L. Lin, and W. C. Ju, “LLC DC/DC resonant converter with PLL control scheme,” IEEE APEC 2007., Conf., pp. 1537–1543, Mar. 2007.
[53] T. Mishima, H. Mizutani, and M. Nakaoka, “An LLC resonant full-bridge inverter-link DC-DC converter with an anti-resonant circuit for practical voltage step-up/down regulation,” IEEE ECCE 2012., Conf., pp. 3533–3540, Sep. 2012.
[54] B. R. Lin, R. S. Wu, C. H. Chao, and Y. J. Chiang, “Interleaved double series resonant converter,” IEEE ICIEA 2011., Conf., pp. 1815–1820, Jun. 2011.
[55] H. Mizutani, T. Mishima, and M. Nakaoka, “A Novel LLC Multi-resonant DC-DC converter with an anti-resonant circuit,” IEEE IPEMC 2012., Conf., pp. 1328–1335, Jun. 2012.
[56] M. Joung, H. Kim, and J. Baekaoka “Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system,” IEEE APEC 2012., Conf., pp. 1292–1297, Feb. 2012.
[57] R. L. Steigerwald, , “A comparison of half-bridge resonant converter topologies,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174–182, Apr. 1988.
[58] M. K. Kazimierczuk, and D. Czarkowski, “Resonant power converters,” John Wiley & Sons, 2nd, pp. 1–46, 2011.
[59] C. P. Basso, “Switch-mode power supplies, SPICE simulations and practical designs,” McGraw-Hill, 1st , pp. 739–868, 2008.
[60] A. K. S. Bhat, “Resonant power converters,” John Wiley & Sons, 1st, pp. 531–545, 1999.
[61] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power electronics, converters, applications, and design,” John Wiley & Sons, 3rd, pp. 730–743, 2003.
[62] K. H. Billingss, “Switch mode power supply handbook,” McGraw-Hill, 1st, pp. 3.201–3.222, 1989.
校內:2018-07-25公開