| 研究生: |
陳春元 Chen, Chun-Yuan |
|---|---|
| 論文名稱: |
異質接面與穿透式射極雙極性電晶體之研究 Investigation of Heterojunction and Tunneling-Emitter Bipolar Transistors |
| 指導教授: |
劉文超
Liu, Wen-Chau 鄭岫盈 Cheng, Shiou-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 穿透式射極雙極性電晶體 、異質接面雙極性電晶體 |
| 外文關鍵詞: | tunneling-emitter, HBT, TEBT |
| 相關次數: | 點閱:101 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於極佳的高速表現、微波特性及高電流驅動能力,架構於三五族材料系統之異質接面雙極性電晶體在數位及微波電路之應用上極具發展潛力。在本論文中,吾人利用低壓金屬有機化學氣相沉積(LP-MOCVD)法成功地研製出磷化銦(InP)及砷化鎵(GaAs)材料系統之異質接面與穿透式射極雙極性電晶體。本文之主要重點著重於傳統結構的改良及設計,文中所提結構,諸如:利用一穿透式射極(tunneling emitter, TE)取代傳統一般異質接面雙極性電晶體(SHBT)及雙異質接面雙極性電晶體(DHBT)之射極層、引用一新穎之複合式射極(composite emitter, CE)結構取代砷化鎵材料之異質接面雙極性電晶體的射極層。此外,吾人亦提出一硫化製程,藉以改善元件之直流及高頻特性。
穿透式射極雙極性電晶體(TEBT)最主要之特色,係設置一薄的穿透式射極能障層(大能隙能障層)於n型及p型同質接面間,有鑑於電子、電洞有效質量之差異,亦或言藉由電子、電洞穿透特性之差異性,可使大量之電子穿透大能隙能障層而成為導通電流;而自基極注入射極之電洞,基於電洞穿透機率十分微小,使大部分之電洞皆為此障壁層所侷限而堆積於基極層,冀望藉由此穿透式射極之引用可有效地改善射極注入效率。由實驗得知,該元件可操作之集極電流區間大於11個數量級,元件在集極電流低於4個微微安培之情況下操作,仍具有數值為3之直流電流增益;在崩潰電壓之表現上,元件之共射極崩潰電壓為2V,另外,元件具有一個極低的共射極補償電壓(offset voltage),其值為40mV;在溫度特性之表現上,此元件亦具有極佳之溫度穩定性;故此元件極適合應用在低功率電子電路上。另外,由於砷化銦鎵之較小能隙及較差之溫度傳導性,故磷化銦/砷化銦鎵異質接面雙極性電晶體通常具較高之輸出電導和較低之崩潰電壓。因此,磷化銦/砷化銦鎵異質接面雙極性電晶體一般僅應用於低電壓和低功率消耗系統上。有鑑於此,一大能隙之磷化銦材料被引用以取代原先之砷化銦鎵集極層,形成一雙異質接面雙極性電晶體。然而,由於基-集接面導電帶之不連續,使得雙異質接面雙極性電晶體呈現一較低之電流增益、較高之飽和電壓及額外的儲存電荷等問題。在本章中,吾人亦利用一較大能隙之複合式集極層取代所研製之穿透式射極雙極性電晶體的砷化銦鎵集極,以圖改善傳統雙異質接面雙極性電晶體之缺點。實驗結果顯示,元件之共射極和共基極崩潰電壓均高於10V以上。
對於異質接面雙極性電晶體而言,由於射-基接面之導電帶不連續值(EC)的存在使得元件特性受其影響而不盡理想,雖現階段常用之磷化銦鎵/砷化鎵材料系統比起砷化鎵/砷化鋁鎵材料系統而言,其具一較小之導電帶不連續值,然此導電帶不連續值及其衍生之缺點依舊影響元件之操作。在第三章中,吾人首先利用理論模擬軟體研究一具有複合式射極層之異質接面雙極性電晶體,並深入探討複合式射極層之參數與元件特性之關連性。吾人發現當複合式射極層之厚度介於70至100 Å時,元件具有最佳之特性表現。同時,吾人亦實際成長一具最佳化參數之元件並量測其各項特性。實驗結果與理論預估十分吻合,此元件具有較小之導通電壓、較低之補償電壓、較低之飽和電壓,故該元件極適合應用於低操作電壓及低功率消耗系統上。
對三五族材料系統而言,囿於材料具較高之表面態位密度及較多之表面複合中心,造成少數載子類型之元件特性劣化及可靠性衰減。在第四章中,吾人於傳統異質接面雙極性電晶體製程中引入一表面處理-硫化製程,由於硫化物鈍化層之使用,元件之表面複合電流和表面態位密度確有明顯的減少,此舉大幅改善元件之特性。實驗結果顯示,實施參數最佳化硫化處理後之元件,除可操作於極低之集極電流區域(IC10-11A),並可有效地降低射-集補償電壓,且削弱射極幾何尺寸對元件的影響;此外,在高溫的環境下,具有硫化物鈍化層之元件亦具有較高的直流電流增益及較佳的溫度穩定性。
Heterojunction bipolar transistors (HBTs) based on III-V compound semiconductor material systems have been widely applied in digital and microwave circuit applications due to their excellent high-speed and microwave performances combined with high current driving capability. In this dissertation, the InP- and GaAs-based HBTs and tunneling emitter bipolar transistors (TEBTs), grown by low pressure metal organic chemical vapor deposition (LPMOCVD), are successfully fabricated and studied. The improvement of device structures, including the use of InP tunneling emitter barrier layer to replace the thick emitter layer and the employment of composite-emitter at emitter-base (E-C) junction of conventional HBTs are included in this dissertation. In addition, we demonstrate a novel process for sulfur treatment to improve the device DC and RF performance.
The TEBT has a thin tunneling barrier sandwiched between the n-type emitter and p-type base of a normal homojunction bipolar transistor. Due to the effective mass difference between electrons and holes, electrons can be injected by tunneling from the emitter into the base, while the tunneling probability for holes is kept small. Therefore, the emitter injection efficiency is improved. The studied device can be operated under an extremely wide collector current regime larger than 11 decades in magnitude of collector current (10-12 to 10-1A). A current gain of 3 is obtained even operated at an ultra-low collector current of 3.9pA (1.5610-7A/cm2). The common-emitter and common-base breakdown voltages of the studied device are higher than 2 and 5V, respectively. Furthermore, a very low collector-emitter offset voltage of 40mV is found. The temperature-dependent DC characteristics of the TEBT are measured and studied. Consequentially, based on experimental results, the studied device provides the promise for low-power electronics applications.
Generally, InP/InGaAs HBTs suffer the drawbacks of high output conductance and low breakdown voltage due to the small energy bandgap and poor thermal conductivity in InGaAs collector. Therefore, InP/InGaAs HBTs are useful mainly for low-voltage and low-power-dissipation applications. These disadvantages can be improved by replacing the InGaAs collector with an InP layer. However, the electron blocking effect resulted from the conduction band discontinuity (EC) at base-collector (B-C) heterojunction will lead to the detrimental influence such as the reduced current gain, increased saturation voltage, and extra charge storage. In Chapter 2, the InP/InGaAs double heterojunction bipolar transistor (DHBT) with an InP tunneling barrier between the InGaAs emitter and base, similar to the TEBT structure as mentioned above, is also fabricated and demonstrated. A 200Å n--InGaAs spacer incorporated with a -doping sheet is introduced between the p+-InGaAs base and n--InP collector to suppress the undesired potential spike and current blocking effect. Also, the temperature-dependent characteristics of the studied device are systematically investigated. The studied device has a higher breakdown voltage than conventional InP single heterojunction bipolar transistors (SHBTs). The B-C junction breakdown voltage VBR up to 15.6V is obtained. Both of the common-emitter and common-base breakdown voltages of the studied device are higher than 10V.
For HBTs, the existence of conduction-band discontinuity (EC) substantially deteriorates the device performance. Although the typical magnitude of EC at In0.49Ga0.51P/GaAs heterointerface is smaller than that of Al0.3Ga0.7As/GaAs heterointerface, the undesired potential spike VC is still observed. In Chapter 3, comprehensively theoretical and experimental studies of InGaP/AlxGa1-xAs/GaAs composite-emitter heterojunction bipolar transistors (CEHBTs) with different thickness of AlxGa1-xAs graded layers are implemented and studied. The studied devices can present lower turn-on voltage, lower offset voltage, lower saturation voltage and uniform current gain by the use of an appropriate AlxGa1-xAs graded layer at lower bias region. It is found that CEHBTs with 70Å~100Å AlxGa1-xAs graded layers exhibit better properties due to the absence of potential spike. It is therefore concluded that the CEHBT with an appropriate thickness of the AlxGa1-xAs graded layer offers the promise for low-voltage and low-power consumption circuit applications.
For III-V material system, the surface passivation is a crucial processing step for fabricating high-performance electronic and optoelectronic devices due to the high-density surface states and large surface recombination velocity. These defects produced by native surface oxides are known to degrade the performance and reliability of minority carrier devices, such as HBTs. In Chapter 4, the sulfur treatment on emitter, base, and collector surfaces of an InGaP/GaAs HBT is employed to develop the surface passivation and improve the device performance. This can enhance the device performances through the reduction of the surface recombination velocity and surface state density. The device with sulfur treatment can be operated under ultra low collector current regimes (IC10-11A). Also, this sulfur treatment can reduce the collector-emitter offset voltage and the impact of emitter size effect. Moreover, as the temperature is increased, the device with sulfur treatment exhibits higher DC current gain and more stable temperature-dependent performances. This extends the application regimes of the studied device in low-power and communication systems. Finally, in chapter 5, we sum up our experience before going on and propose some prospects.
References
[1] S. C. Lee, J. N. Kau, and H. H. Lin, “Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 45, pp.1114-116, 1984.
[2] Y. H. Jan and S. C. Lee, “Vertical monolithic integration of a GaAs/AlGaAs V-channeled substrate inner stripe laser diode and a heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 57, pp. 2750-2752, 1990.
[3] H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
[4] H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, pp. 1535-1536, 1957.
[5] H. Kanbe, J. C. Vlcek, and C. G. Fonstad, “(In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liqued phase wpitaxy with high dc current gain,” IEEE Electron Device Lett., Vol. 5, pp. 5-7, 1984.
[6] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAsbase, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
[7] J. Xu and M. Shur, “A tunneling emitter bipolar transistor,” IEEE Electron Device Lett., vol. 7, pp. 416-418, 1986.
[8] F. E. Najjar, D. C. Rasulescu, Y. K. Chen, G. W. Wicks, P. J. Tasker, and L. F. Easman, “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar tranistor,” Appl. Phys Lett., vol. 50, pp. 1915-1917, 1987.
[9] A. F. J Levi, R. N. Nottenburg, Y. K. Chen, and J. E. Cunningham, “AlAs/GaAs tunnel emitter bipolar transistor,” Appl. Phys. Lett., vol. 54, pp. 2250-2252, 1989.
[10] W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
[11] W. B. Chen, Y. K. Su, C. L. Lin, H. C. Wang, S. M. Chen, J. Y. Su, and M. C. Wu, “Fabrication of InGaP/Al0.98Ga0.02As/GaAs oxide-confined collector-up heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol. 24, pp. 619-621, 2003.
[12] A. W. Hanson, S. A. Stockman, and G. E. Stillman, “Comparison of In0.5Ga0.5P/GaAs single- and double-heterojunction bipolar transistors with a carbon-doped base,” IEEE Electron Device Lett., vol. 14, pp. 25-28, 1993.
[13] C. R. Bolognesi, M. M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, “InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2631-2639, 2001.
[14] B. P. Yan, C. C. Hsu, X. Q. Wang, and E. S. Yang, “Low turn-on voltage InGaP/GaAsSb/GaAs double HBTs grown by MOCVD,” IEEE Electron Device Lett., vol. 23, pp. 170-172, 2002.
[15] W. P. Neo and H. Wang, “Temperature dependence of the electron impact ionization in InGaP-GaAs-InGaP DHBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 304-310, 2004.
[16] V. E. Houtsma, J. Chen, J. Frackoviak, T. Hu, R. F. Kopf, R. R. Reyes, A. Tate, Y. Yang, N. G. Weimann, and Y. K. Chen, “Self-heating of submicrometer InP-InGaAs DHBTs,” IEEE Electron Device Lett., vol. 25, pp. 357-359, 2004.
[17] S. S. Lu and C. C. Wu, “High-current-gain small-offset-voltage In0.49Ga0.51 P/GaAs tunneling emitter bipolar transistors grown by gas source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 468-470, 1992.
[18] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, and W. C. Liu, “A novel InP/InGaAs TEBT for ultralow current operations,” IEEE Electron Device Lett., vol. 24, pp. 126-128, 2003.
[19] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP-InGaAs Tunneling Emitter Bipolar Transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
[20] K. Mochizuki, R. J. Welty, P. M. Asbeck, C. R. Lutz, R. E. Welser, S. J. Whitney, and N. Pan, “GaInP/GaAs collector-up tunneling-collector heterojunction bipolar transistors (C-up TC-HBTs): optimization of fabrication process and epitaxial layer structure for high-efficiency high-power amplifiers,” IEEE Trans. Electron Devices, vol. 47, pp. 2277-2283, 2000.
[21] R. J. Welty, K. Mochizuki, C. R. Lutz, R. E. Welser, and P. M. Asbeck, “Design and performance of tunnel collector HBTs for microwave power amplifiers,” IEEE Trans. Electron Devices, vol. 50, pp. 894-900, 2003.
[22] S. Y. Cheng, “Comprehensive study of InGaP/AlGaAs/GaAs heterojunction bipolar transistor with a continuous conduction-band structure,” Semicond. Sci. Technol., vol. 17, pp. 701-707, 2002.
[23] S. Y. Cheng, C. Y. Chen, J. Y. Chen, H. M. Chuang, C. H. Yen, and W. C Liu, “Comprehensive study of InGaP–AlxGa1–xAs–GaAs composite-emitter heterojunction bipolar transistors with different thickness of AlxGa1–xAs graded layers,” J. Vac. Sci. & Technol., vol. B22, no.4, pp. 1699-1704, 2004.
[24] J. Y. Chen, S. Y. Cheng, C. Y. Chen, K. M. Lee, C. H. Yen, S. Y. Fu, S. F. Tsai, and W. C. Liu, “Characteristics of an InP–InGaAs–InGaAsP HBT,” IEEE Trans. Electron Devices, vol. 51, pp. 1935-1938, 2004.
[25] J. Y. Chen, D. F. Guo, S. Y. Cheng, K. M. Lee, C. Y. Chen, H. M. Chuang, S. I. Fu, and W. C. Liu, “A new InP-InGaAs HBT with a superlattice-collector structure,” IEEE Electron Device Lett., vol. 25, pp. 244-246, 2004.
[26] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
[27] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in -doped In0.425Al0.575As-In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Lett., vol. 26, pp. 59-61, 2005.
[28] C. H. Oxley and M. J. Uren, “Measurements of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor,” IEEE Trans. Electron Devices, vol. 52, pp. 165-169, 2005.
[29] S. D. Mertens, J. A. DelAlamo, T. Suemitsu, and T. Enoki, “Hydrogen sensitivity of InP HEMTs with WSiN-based gate stack,” IEEE Trans. Electron Devices, vol. 52, pp. 305-310, 2005.
[30] C. S. Choi, H. S. Kang, W. Y. Choi, D. H. Kim, and K. S. Seo, “Phototransistors based on InP HEMTs and their applications to millimeter-wave radio-on-fiber systems,” IEEE Trans. Microwave Theory and Techniques, vol. 53, pp. 256-263, 2005.
[31] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Gate length scaling in high performance InGaP/InGaAs/GaAs pHEMTs,” IEEE Electron Device Lett., vol. 21, pp. 141-143, 2000.
[32] C. J. Wei, Y. A. Tkachenko, and D. Bartle, “A new model for enhancement-mode power pHEMT,” IEEE Trans. Microwave Theory and Techniques, vol. 50, pp. 57-61, 2002.
[33] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double -doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., vol. 24, pp. 1-3, 2003.
[34] R. Menozzi, “Off-state breakdown of GaAs PHEMTs: review and new data,” IEEE Trans. Device and Materials Reliablity, vol. 4, pp. 54-62, 2004.
[35] Y. C. Chou, R. Grundbacher, D. Leung, R. Lai, P. H. Liu, and Q. Kan, “Physical identification of gate metal interdiffusion in GaAs PHEMTs,” IEEE Electron Device Lett., vol. 25, pp. 64-66, 2004.
[36] Y. C. Chou, D. Leung, R. Grundbacher, R. Lai, P. H. Liu, Q. Kan, M. Biedenbender, D. Eng, and A. Oki, “The effect of gate metal interdiffusion on reliability performance in GaAs PHEMTs,” IEEE Electron Device Lett., vol. 25, pp. 351-353, 2004.
[37] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, and D. Theron, “60-GHz high power performance In0.35Al0.65As-In0.35Ga0.65As metamorphic HEMTs on GaAs,” IEEE Electron Device Lett., vol. 24, pp. 724-726, 2003.
[38] B. H. Lee, D. An, M. K. Lee, B. O. Lim, S. D. Kim, and J. K. Rhee, “Two-stage broadband high-gain W-band amplifier using 0.1-m metamorphic HEMT technology,” IEEE Electron Device Lett., vol. 25, pp. 766-768, 2004.
[39] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., vol. 85(21), pp. 5087-5089, 2004.
[40] Y. C. Lien, E. Y. Chang, H. C. Chang, L. H. Chu, G. W. Huang, H. M. Lee, C. S. Lee, S. H. Chen, P. T. Shen, and C. Y. Chang, “Low-noise metamorphic HEMTs with reflowed 0.1m T-gate,” IEEE Electron Device Lett., vol. 25, pp. 348-350, 2004.
[41] C. K. Lin, W. K. Wang, Y. J. Chan, and H. K. Chiou, “BCB-bridged distributed wideband SPST switch using 0.25m In0.5Al0.5As-In0.5Ga0.5As metamorphic HEMTs,” IEEE Trans. Electron Devices, vol. 52, pp. 1-5, 2005.
[42] C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen and S. M. Chen, "Improved Light - Output Power of Gan LEDs by Selective Region Activation", IEEE Photonics Technology Letters, vol. 16, No. 6, pp. 1444-1446, 2004.
[43] Y. K. Su, H. C. Wang, C. L. Lin, W. B. Chen, S. M. Chen, "Improvement of AlGaInP Light Emitting Diode by Sulfide Passivation," IEEE Photonics Technology Letters, vol. 15, pp. 1345-1347, 2003.
[44] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photonics Technology Lett., vol. 17, pp. 288-290, 2005.
[45] J. O. Song, D. S. Leem, S. K. Joon, Y. Park, S. W. Chae, and T. Y. Seong, “Improvement of the luminous intensity of light-emitting diodes by using highly transparent Ag-indium tin oxide p-type ohmic contacts,” IEEE Photonics Technology Lett., vol. 17, pp. 291-293, 2005.
[46] D. Vasileska and S. S. Ahmed, “Narrow-width SOI devices: the role of quantum-mechanical size quantization effect and unintentional doping on the device operation,” IEEE Trans. Electron Devices, vol. 52, pp. 227-236, 2005.
[47] J. H. Yoo, C. Nack, G. H. Yang, and I. S. Park, “Stabilizing LD power in a wide temperature range for optical burst-mode communications by means of optical filter,” IEEE Photonics Technology Lett., vol. 12, pp. 843-845, 2000.
[48] W. Birk, I. Arvanitidis, P. G. Jonsson, and A. Medvedev, “Physical modeling and control of dynamic foaming in an LD-converter process,” IEEE Trans. Industry Applications, vol. 37, pp. 1067-1073, 2001.
[49] S. S. Lu and C. C. Huang, “High-current-gain Ga0.51In0.49P/GaAs GaInP/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
[50] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I.Babicc, “Determination of valence and conduction-band discontinuities at the (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, pp. 643-649, 1987.
[51] E. Tokumitsu, A. G. Dentai, and C. H. Joyner, “GaInAs/InP pseudo-heterojunction bipolar transistors grown by MOVPE,” IEE Electron Letters, vol. 25, no. 22, pp. 1539-1540,1989.
[52] B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
[53] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[54] M. Borgarino, R. Plana, S. L. Delage, F. Fantini, and J. Graffeuil, “Influence of surface recombination on the burn-in effect in microwave GaInP/GaAs HBT's,” IEEE Trans. Electron Devices, vol. 46, pp. 10-16, 1999.
[55] R. Lyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[56] R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframoboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
[57] N. Chand and H. Morkoc, “Doping effects and compositional grading in AlxGa1-xAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 32, pp. 1064-1069, 1985.
[58] J. J. Liou, C. S. Ho, L. L. Liou, and C. I. Huang, “An analytical model for current transistor in AlGaAs/GaAs abrupt HBTs with a setback layer,” Solid State Electron., vol. 36, pp. 819-825, 1993.
[59] N. Chand, R. Fischer, and H Morkoc, “Collector-emitter offset voltage in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 47, pp. 313-315, 1985.
[60] M. Ohkubo, A. Iketani, T. Ljichi, and T. Kikuta, “InGaAs/InP double-heterojunction bipolar transistors with step graded InGaAsP between InGaAs base and InP collector grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 59, pp. 2697-2699, 1991.
[61] B. Willen and H. Asonen, “High-gain, high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[62] J. N. Burghartz, S. R. Mader, B. J. Ginsberg, B. S. Meyerson, J. M. C. Stork, C. L. Stanis, U. Y. C. Sun, and M. R. Polcari, “Self-aligned bipolar epitaxial base n-p-n transistors by selective epitaxy emitter window (SEEW) technology,” IEEE Trans. Electron Devices, vol. 38, pp. 378-385, 1991.
[63] M. M. Jahan and A. F. M. Anwar, “Junction temperature dependence of high-frequency noise in heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 16, pp. 551-553, 1995.
[64] M. M. Jahan and A. F. M. Anwar, “Early voltage in double heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 2028-2029, 1995.
[65] S. J. Chang and C. P. Lee, “Light-induced sidegating effect in GaAs MESFET's,” IEEE Trans. Electron Devices, vol. 40, pp. 2186-2191, 1993.
[66] K. W. Kobayashi, J. Cowles, L. T. Tran, T. R. Block, A. K. Oki, and D. C. Streit, “A 2-50 GHz InAlAs/InGaAs-InP HBT distributed amplifier,” IEEE GaAs IC Symp., Orlando, FL, 207-210, 1996.
[67] M. Tobe, Y. Amemiya, S. Sakai, and M. Umeno, “High-sensitivity InGaAsP/InP phototransistors,” Appl. Phys. Lett., vol. 37, pp. 73-75, 1980.
[68] T. Ohishi, Y. Abe, H. Sugimoto, K. Ohtsuka, and T. Matsui, “Ultra-high current gain InGaAsP/InP heterojunction bipolar transistor,” IEE Electron. Lett., vol. 26, pp. 392-393, 1990.
[69] S. Chandrasekhar, M. K. Hoppe, A. G. Dentai, C. H. Joyner, and G. J. Qua, “Demonstration of enhanced performance of an InP/InGaAs heterojunction phototransistor with a base terminal,” IEEE Electron Device Lett., vol. 12, pp. 550-552, 1991.
[70] ATLAS, 2-D semiconductor device simulator, version 5.2.0.R. SILVACO Int., Santa Clara, CA, USA, 2001.
[71] ATLAS II Users Manual (Silvaco International, Santa Clara, CA, USA, 2001).
[72] J. H. Davies: Cambridge, Phys. Low-Dimensional Semicond. Cambridge Unit. Press (1998).
[73] R. J. Welty, K. Mochizuki, C. R. Lutz, R. E. Welser, and P. M. Asbeck, “Design and performance of tunnel collector HBTs for microwave power amplifiers,” IEEE Trans. Electron Devices, vol. 50, pp. 894-900, 2003.
[74] P. Zwicknagl, U. Schaper, L. Schleicher, H. Siweris, K. H. Bachem, T. Lauterbach, and W. Pletschen, “High speed non-selfaligned GaInP/GaAs-TEBT,” IEE Electron. Lett., vol. 28, pp. 327-328, 1992.
[75] H. R. Chen, C. P. Lee, C. Y. Chang, K. L. Tsai, and J. S. Tsang, “Current gains of AlAs/GaAs tunnelling emitter bipolar transistors with 25-500 Å barrier thickness,” IEE Electron. Lett., vol. 29, pp. 1883-1884, 1993.
[76] M. Borgarino, R. Plana, M. Fendler, J. P. Vilcot, F. Mollot, J. Barette, D. Decoster, and J. Graffeuil, “Low frequency noise behavior of InP/InGaAs heterojunction bipolar waveguide phototransistors,” Solid-State Electronics, vol. 44, pp. 59-62, 2000.
[77] M. L. G. Juan and J. G. L. Antonio, “Physics-based model for tunnel heterostructure bipolar transistors,” Semicond. Sci. Technol., vol. 19, pp. 1300-1305, 2004.
[78] B. Jalali and S. J. Pearton, “InP HBTs: Growth, Processing, and Applications,” MA: Artech House, 1995.
[79] B. W-P. Hong, J. I. Song, C. J. Palmstrom, B. Van der Gaag, K. B. Chough, and J. R. Hayes, “DC, RF, and noise characteristics of carbon-doped base InP/InGaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 19-25, 1994.
[80] Y. M. Hsin, M. C. Ho, X. B. Mei, H. H. Liao, T. P. Chin, C. W. Tu, and P. M. Asbeck, “Pseudomorphic AlInP/InP heterojunction bipolar transistors,” IEE Electron. Lett., vol. 31, pp. 141-142, 1995.
[81] S. R. Bahl, N. Moll, V. M. Robbins, H. C. Kuo, B. G. Moser, and G. E. Stillman, “Be diffusion in InGaAs/InP heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 332-334, 2000.
[82] S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie, and W. C. Liu, “Design consideration of emitter-base junction structure for InGaP/GaAs heterojunction bipolar transistors,” Solid-State Electronics, vol. 43, pp. 297-304, 1999.
[83] W. Liu: Handbook of III-V Heterojunction Bipolar Transistors. (Wiley, New York 1998).
[84] R. J. Malik, A. Feygenson, D. Ritter, R. A. Hamm, M. B. Panish, J. Nagle, K. Alavi, and A. Y. Cho, “Temperature dependence of collector breakdown voltage and output conductance in HBT’s with AlGaAs, GaAs, InP, and InGaAs collectors,” in IEDM Tech. Dig., pp. 805-808, 1991.
[85] W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 524-527, 2000.
[86] H. F. Chau, D. P. Pavlidis, J. Hu, and K. Tomizawa, “Breakdown-speed considerations in InP/InGaAs single- and double- heterostructure bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 2-8, 1993.
[87] W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, no. 7, pp.1351-1353, 1993.
[88] R. J. Malik, A. Feygenson, D. Ritter, R. A. Hamm, M. B. Panish, J. Nagle, K. Alavi, and A.Y. Cho, “Temperature dependence of collector breakdown voltage and output conductance in HBT’s with AlGaAs, GaAs, InP, and InGaAs collectors,” in IEDM Tech. Dig., pp. 805-808, 1991.
[89] A. Bandyopadhyay, S. Subramanian, S. Chandrasekhar, A. G. Dentai, and S. M. Goodnick, “Degradation of DC characteristics of InGaAs/InP single heterojunction bipolar transistors under electron irradiation,” IEEE Trans. Electron Devices, vol. 46, pp. 840-849, 1999.
[90] J. R. Hayes, A. F. J. Levi, A. C. Gossard, and J. H. English, “Base transport dynamics in a heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 49, No. 21, pp. 1481-1483, 1986.
[91] G. Niu, J. D. Cressler, U. Gogineni, and D. L. Harame, “Collector-base junction avalanche multiplication effects in advanced UHV/CVD SiGe HBTs,” IEEE Electron Device Lett., vol. 19, pp. 288-290, 1998.
[92] B. Agarwal, D. Mensa, R. Pullela, Q. Lee, U. Bhattacharya, L. Samoska, J. Guthrie, and M. J. W. Rodwell, “A 277 GHz fmax transferred-substrate heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 18, pp. 228-231, 1997.
[93] E. Alekseev and D. Pavlidis, “DC and high frequency performance of AlGaN/GaN heterojunction bipolar transistors,” Solid-State Electronics, vol. 44, pp. 245-252, 2000.
[94] W. C. Liu and W. S. Lour, “An improved heterostructure-emitter bipolar transistor (HEBT),” IEEE. Electron Device Lett., vol. 12, pp. 474-476, 1991.
[95] W. C. Liu, W. S. Lour, and D. F. Guo, “A new AlGaAs/GaAs double heterostructure-emitter bipolar transistor prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 60, pp. 362-364, 1992.
[96] W. C. Liu, D. F. Guo, and W. S. Lour, “AlGaAs/GaAs double heterostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Devices, vol. 39, pp. 2740-2744, 1992.
[97] W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie, and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, pp. 630-633, 1998.
[98] C. Y. Chen, W. H. Chiou, C. H. Yen, H. M. Chuang, J. Y. Chen, C. C. Cheng, and W. C. Liu, “Study on dc characteristics of an interesting InP/InGaAs tunneling-emitter bipolar transistor with double heterostructures,” J. Vac. Sci. & Technol., vol. 21, pp. 82-86, 2003.
[99] H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors,” IEEE Electron Device Lett., vol. 15, pp. 336-338, 1994.
[100] J. C. Fan, C. P. Lee, J. A. Hwang, and J. H. Hwang, “AlGaAs/GaAs Heterojunction Bipolar Transistor on Si substrate using epitaxial lift-off,” IEEE Electron Device Lett., vol. 16, pp. 393-395, 1995.
[101] W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
[102] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee, and W. C. Liu, “Comprehensive study of InGaP/ AlxGa1-xAs /GaAs heterojunction bipolar transistors (HBTs) with different doping concentrations of AlxGa1-xAs graded layers,” Semicond. Sci. Technol., Vol. 19, pp. 351-358, 2004.
[103] K. Ikossi-Anastasiou, A. Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 13, pp. 414-417, 1992.
[104] W. Liu and J. S. Harris Jr., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, 1992.
[105] N. Hayama and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT's with AlGaAs surface passivation layer,” IEEE Electron Device Lett., vol. 11, pp. 388-390, 1990.
[106] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterojunction-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
[107] S. Y. Deng, C. H. Wu, and Joseph Y. M. Lee, “A study on the transient effect due to hydrogen passivation in InGaP HBTs,” IEEE Electron Device Lett., vol. 24, pp. 372-374, 2003.
[108] R. Bolognesi, N. Martine, M. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, “Non-blocking collector InP/GaAsSb/InP double heterojunction bipolar transistors with a staggered lineup base-collector junction,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 155-157, 1999.
[109] N. Y. Li, P. C. Chang, A. G. Baca, X. M. Xie, P. R. Sharps, and H. Q. Hou, “ DC characteristics of MOVPE-grown NPN InGaP/InGaAsN DHBT's,” IEE Electron. Lett., vol. 36, pp. 81-82, 2000.