簡易檢索 / 詳目顯示

研究生: 蔡佳育
Tsai, Chia-Yu
論文名稱: 固固接面摩擦發電機制探討及其裝置設計應用
Investigation of Triboelectric Mechanism Based on Solid-dielectrics Contact and Its Application
指導教授: 何青原
Ho, Ching-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 76
中文關鍵詞: 摩擦奈米發電機環管式構造無動力風球直流輸出固固接面
外文關鍵詞: triboelectric nanogenerator, rotary-tubular structure, roof ventilator, direct-current output, solid-dielectrics interface
相關次數: 點閱:85下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摩擦奈米發電機(TENG)透過摩擦起電效應和靜電感應發電,是一種極具應用潛力的能量收集方法。本研究運用簡化模型探討固固接面TENG之各階段發電機制,並解析過程中各影響因子,針對材料參數及裝配參數進行最佳化改良,使輸出效能最佳化。接著展示了一種利用鐵氟龍環管與玻璃球珠作為摩擦材質,安裝於轉輪結構上的環管式TENG裝置。其中球珠直徑略小於管徑,預先填入管中,管以環型固定於轉子隨之轉動,側邊開出溝槽,透過與定子相連的擋板構造,將管內球珠限制於特定活動範圍,在固定的區域內,球珠由不停轉動的鐵氟龍管帶動而在原地轉動,並與管壁產生摩擦,產生表面電荷。此表面電荷會進一步使設置於管外壁的銅電極感應出電荷流動,再藉由電刷對構造,將此正負交替的電訊號以同向直流形式導出至負載迴路中。與傳統TENG的交流輸出特性不同,此環管式TENG無需外加整流電路,降低因整流元件耗損的能量以及裝配成本,且經過最佳化,可順利點亮121顆商用LED燈泡。此環管式TENG可裝配於任何轉輪結構在適當環境下使用,本研究以臺灣常見的屋頂排風球為例將環管式TENG結合於實際產品,展示透過環管式TENG收集環境風能與熱能,將環境廢能轉換為電能並實際應用於生活中的方式。除了可作為居家綠能供電,亦可用於自供電智慧監測裝置應用於農畜產業中。

    The working principle of triboelectric nanogenerators (TENGs) is the coupling of triboelectrification and electrostatic induction effect. The contact behaviors between solid-solid relative motion are divided into several steps including electrostatic induction, charge retention, depletion and electrostatic induction and the mechanism in each step are revealed. Based on the mechanism and simplified model, the relevant parameters of the TENG are optimized. In this research, a solid-solid interface based rotary-tubular TENG motivated by spinning device with direct-current output is demonstrated. This TENG consists of a sandwich structure of copper electrodes on fluorinated ethylene propylene (FEP) tube fixed around the rotator of the spinning object and dielectrics pellets inserted into the tube. The tube is cut along the edge to make a track so that while spinning, the prefilled pellets would be restricted in certain area by stoppers fixed to the stator through the track. Different from the traditional TENGs, the energy generated by our device is converted from alternating-current into direct-current output by the electric brushes structure to reduce the fabrication cost. After optimizing the parameter combination, the direct-current rotary-tubular TENG was able to directly light up 121 commercial LEDs at 35 rpm. To demonstrate the utilization of this rotary-tubular TENG, the device is then mounted on a roof ventilator to harvest wind and convection energy, showing its potential to be used as self-powered generation systems for future monitoring and wasted energy harvesting.

    摘要 I Extended Abstract II 致謝 V 總目錄 VI 表目錄 VIII 圖目錄 VIII 一、前言 1 二、文獻回顧 2 2-1 摩擦奈米發電機的起源 2 2-2 摩擦奈米發電機的工作原理 3 2-3 摩擦奈米發電機的發展型態與應用 6 三、實驗步驟與方法 8 3-1 實驗規劃 8 3-1-1 實驗流程 8 3-1-2 研究架構 9 3-2 微型發電裝置機構設計 10 3-2-1 工作原理 14 3-3 簡易模型裝置 16 3-3-1 水平擺錘裝置 16 3-3-2 轉盤裝置 19 3-4 實驗儀器 20 四、實驗結果與討論 24 4-1 發電機制 24 4-1-1 A階段機制 25 4-1-2 B階段機制 26 4-1-3 C階段 30 4-1-4 D階段機制 31 4-1-5 E階段機制 31 4-1-6 F階段 32 4-2 影響參數 34 4-2-1 球珠速度與帶電量 34 4-2-2 球珠帶電量 40 4-2-3 基板厚度 42 4-2-4 基板材質 46 4-2-5 球珠材質 53 4-2-6 最佳化驗證 54 4-3 裝配參數 56 4-3-1 球珠數量 56 4-3-2 運轉速度 58 4-3-3 電刷組數 60 4-3-4 產電效能 62 4-4 裝置應用 64 五、結論 69 六、參考文獻 70

    [1] F. R. Fan, W. Tang, Z. L. Wang, “Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics,” Adv. Mater., vol. 28, pp. 4283-4305, 2016.
    [2] Z. L. Wang. “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano, vol. 7, 9533– 9557, 2013.
    [3] X. Y. Li, G. Q. Xu, X. Xia, J. J. Fu, L.B. Huang, Y. L. Zi, “Standardization of triboelectric nanogenerators: Progress and perspectives.” Nano Energy, vol. 56, pp. 40-55, 2019.
    [4] Z. L. Wang, ”Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives.” Faraday Discuss, vol. 176, pp. 447-458, 2014.
    [5] S. Niu, Z. L. Wang, “Theoretical systems of triboelectric nanogenerators” Nano Energy, vol. 14, pp. 161-192, 2015.
    [6] Y. Luo, Z. H. Wang, J. Y. Wang, X. Xiao, Q. Li, W. B. Ding, H.Y. Fu, “Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces.” Nano Energy, vol. 89 Part A, p. 106330, 2021.
    [7] L. Xu, L. Xu, J. Luo, Y. Yan, B. E. Jia, X. Yang, Y. Gao, Z. L. Wang, “Hybrid All-in-One Power Source Based on High-Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy.” Adv. Energy Mater., vol. 10, p. 2001669, 2020.
    [8] W. Sun, Z. Ding, Z. Qin, F. Chu, Q. Han, “Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators.” Nano Energy, vol. 70, p. 104526, 2020.
    [9] Y. Wang, E. Yang, T. Chen, J. Wang, Z. Hu, J. Mi, X. Pan, M. Xu, “A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing.” Nano Energy, vol. 78, p. 105279, 2020.
    [10] T. Kim, J. Chung, D. Y. Kim, J. H. Moon, S. Lee, M. Cho, S. H. Lee, S. Lee, “Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia.” Nano Energy, vol. 27, pp. 340–351, 2016.
    [11] Y. Wang, X. Liu, T. Chen, H. Wang, C. Zhu, H. Yu, L. Song, X. Pan, J. Mi, C. Lee, et al, “An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition.” Nano Energy, vol. 90, p. 106503, 2021.
    [12] S. Wang, Y. Xie, S. Niu, L. Lin, Z. L. Wang, “Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes.” Adv. Mater., vol. 26, pp. 2818–2824, 2014.
    [13] M. L. Seol, S. H. Lee, J. W. Han, D. Kim, G. H. Cho, Y. K. Choi, “Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures.” Nano Energy, vol. 17, pp. 63–71, 2015.
    [14] Ahmed, Z. Saadatnia, I. Hassan, Y. Zi, Y. Xi, X. He, J. Zu, Z. L. Wang, “Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy.” Adv. Energy Mater., vol. 7, p. 201601705, 2017.
    [15] Khushboo, P. Azad, “Design and Analysis of a Synchronized Interface Circuit for Triboelectric Energy Harvesting.” J. Electron. Mater, vol. 49, pp. 2491–2501, 2020.
    [16] F. R. Fan, Z. Q. Tian, Z. L. Wang, “Flexible triboelectric generator.” Nano Energy, vol. 1, pp. 328–334, 2012.
    [17] J. W. Zhong, Y. Zhang, Q. Z. Zhong, Q. Y. Hu, B. Hu, Z. L. Wang, J. Zhou, “Fiber-Based Generator for Wearable Electronics and Mobile Medication.” ACS Nano, vol. 8, no. 6, pp. 6273–6280, 2014.
    [18] J. Y. Wang, Z. Y. Wu, L. Pan, R. J. Gao, B. B. Zhang, L. J. Yang, H. Y. Guo, R. J. Liao, Z. L. Wang, “Direct-Current Rotary-Tubular Triboelectric Nanogenerators Based on Liquid-Dielectrics Contact for Sustainable Energy Harvesting and Chemical Composition Analysis.” ACS Nano, vol. 13, no. 2, pp. 2587–2598, 2019.
    [19] José Sánchez del Río, A. Yusuf, X. Ao, Ignacio Astarloa Olaizola, Lucía Urbelz López-Puertas, María Yolanda Ballesteros, Romano Giannetti, Vanesa Martínez, José Luis Jiménez, José Benito Bravo Monge, X. S. Chen, D. Y. Wang, “High-resolution TENGS for earthquakes ground motion detection.” Nano Energy, vol. 102, p. 107666, 2022.
    [20] H. Y. Zhou, J. Dong, H. W. Liu, L. L. Zhu, C. Y. Xu, X. F. He, S. Zhang, Q. L. Song, “The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator.” Nano Energy, vol. 95, p. 107050, 2022.
    [21] X. Liang, Z. Liu, Y. Feng, J. Han, L. Li, J. An, P. Chen, T. Jiang, Z. L. Wang, “Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting.” Nano Energy, vol. 83, p. 105836, 2021.
    [22] H. Pang, Y. Feng, J. An, P. Chen, J. Han, T. Jiang, Z. L. Wang, “Segmented Swing-Structured Fur-Based Triboelectric Nanogenerator for Harvesting Blue Energy toward Marine Environmental Applications.” Adv. Funct. Mater., vol. 31, p. 2106398, 2021.
    [23] P. Chen, J. An, S. Shu, R. Cheng, J. Nie, T. Jiang, Z. L. Wang, “Super-Durable, Low-Wear, and High-Performance Fur-Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture.” Adv. Energy Mater., vol. 11, p. 202003066, 2021.
    [24] Y. J. Kim, J. J. Lee, S. W. Park, C. H. Park, C. M. Park, H. J. Choi, “Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators.” RSC Adv., vol. 7, p. 49368, 2017.
    [25] 曾家緹, 孫詠苓, 陳佳堃, 曾子彝, “現行台灣傳統式雞舍飼養環境溫度控制評估與改善設計.” 台灣經濟研究院生物科技產業研究中心, 農業生技產業季刊第六十五期p.25-28.
    [26] Y. C. Mao, D. L. Geng, E. J. Liang, X. D. Wang, “Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires.” Nano Energy, vol. 15, pp. 227–234, 2015.
    [27] D. Liu, L. L. Zhou, Z. L. Wang, J. Wang, “Triboelectric nanogenerator: from alternating current to direct current.” iScience, vol. 24, no. 1, p. 102018, 2021.
    [28] Z. M. Lin, B. B. Zhang, H. Y. Zou, Z. Y. Wu, H. Y. Guo, Y. Zhang, J. Yang, Z. L. Wang, “Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability.” Nano Energy, vol. 68, p. 104378, 2020.
    [29] T. H. Cheng, Y. K. Li, Y. C. Wang, Q. Gao, T. Ma, Z. L. Wang, “Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting.” Nano Energy, vol. 60, pp. 137-143, 2019.
    [30] A. Alagumalai, O. Mahian, K.E.K. Vimal, L. Yang, X. Xiao, S. Saeidi, P. Zhang, T. Saboori, S. Wongwises, Z. L. Wang, J. Chen, “A contextual framework development toward triboelectric nanogenerator commercialization.” Nano Energy, vol. 101, p. 107572, 2022.
    [31] S. H. Wang, L. Lin, Z. L. Wang, “Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics.” Nano Lett, vol. 12, no. 12, pp. 6339–6346, 2012.
    [32] L. Lin, S. H. Wang, Y. N. Xie, Q. S. Jing, S. M. Niu, Y. F. Hu, Z. L. Wang, “Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy.” Nano Lett, vol. 13, no. 6, pp. 2916–2923, 2013.
    [33] Y. G. Heo, C. L. Kim, G. M. Kim, K. S. Lee, W. B. Hwang, J. W. Lee, “Ventilator integrated triboelectric nanogenerator based on structure of centrifugal brake.” Surfaces and Interfaces, vol. 27, p. 101525, 2021.
    [34] C. Y. Wang, H. Y. Guo, P. Wang, J. W. Li, Y. H. Sun, D. Zhang, “An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay.” Adv. Mater., N./a, p. 2209895, 2023.
    [35] L. Long, W. Liu, Z. Wang, W. He, G. Li, Q. Tang, H. Guo, X. Pu, Y. Liu, C. Hu, “High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting.” Nat. Commun., vol. 12, p. 4689, 2021.
    [36] Z. L. Wang, “On the expanded Maxwell’s equations for moving charged media system – General theory, mathematical solutions and applications in TENG.” Materials Today, vol. 52, pp. 348-363, 2022.
    [37] P. Chen, J. An, S. Shu, R. Cheng, J. Nie, T. Jiang, Z. L. Wang, “Super-Durable, Low-Wear, and High-Performance Fur-Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture.” Adv. Mater., vol. 11, p. 2003066, 2021.
    [38] Y. Jie, X. Jia, J. Zou, Y. Chen, N. Wang, Z. L. Wang, X. Cao, “Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy.” Adv. Energy Mater., vol. 8, p. 1703133, 2018.
    [39] G. L. Liu, H. Y.Guo, S. X. Xu, C. G. Hu, Z. L. Wang, “Oblate Spheroidal Triboelectric Nanogenerator for All-Weather Blue Energy Harvesting.” Adv. Energy Mater., vol. 9, p. 1900801, 2019.
    [40] X. Liang, T. Jiang, Y. Feng, P. Lu, J. An, Z. L. Wang, “Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting.” Adv. Energy Mater., vol. 10, p. 2002123, 2020.
    [41] T. Jiang, H. Pang, J. An, P. Lu, Y. Feng, X. Liang, W. Zhong, Z. L. Wang, “Robust Swing-Structured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting.” Adv. Energy Mater., vol. 10, p. 2000064, 2020.
    [42] C. Zhang, L. Zhou, P. Cheng, D. Liu, C. Zhang, X. Li, S. Li, J. Wang, Z. L. Wang, “Bifilar-Pendulum-Assisted Multilayer-Structured Triboelectric Nanogenerators for Wave Energy Harvesting.” Adv. Energy Mater., vol. 11, p. 2003616, 2021.
    [43] C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu, L. He, J. Wang, Z. L. Wang, “High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting.” Adv. Funct. Mater., vol. 32, p. 2111775, 2022.
    [44] Y. Pang, Y. Fang, J. Su, H. Wang, Y. Tan, C. C. Cao, “Soft Ball-Based Triboelectric–Electromagnetic Hybrid Nanogenerators for Wave Energy Harvesting.” Adv. Mater. Technol., vol. 8, p. 2201246, 2023.
    [45] W. Xu, L. B. Huang, M. C. Wong, L. Chen, G. X. Bai, J. H. Hao, “Environmentally Friendly Hydrogel-Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self-Powered Sensors.” Adv. Energy Mater., vol. 7, p. 1601529, 2017.
    [46] Y. C. Lai, J. Deng, S. L. Zhang, S. Niu, H. Guo, Z. L. Wang, “Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing.” Adv. Funct. Mater., vol. 27, p. 1604462, 2017.
    [47] X. Dai, L. B. Huang, Y. Du, J. Han, Q. Zheng, J. Kong, J. Hao, “Self-Healing, Flexible, and Tailorable Triboelectric Nanogenerators for Self-Powered Sensors based on Thermal Effect of Infrared Radiation.” Adv. Funct. Mater., vol. 30, p. 1910723, 2020.
    [48] K. Parida, V. Kumar, J. Wang, V. Bhavanasi, R. Bendi, P. S. Lee, “Highly Transparent, Stretchable, and Self-Healing Ionic-Skin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications.” Adv. Mater., vol. 29, p. 1702181, 2017.
    [49] K. Kim, Y. G. Park, B. G. Hyun, M. Choi, J. U. Park, “Recent Advances in Transparent Electronics with Stretchable Forms.” Adv. Mater., vol. 31, p. 1804690, 2019.
    [50] X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li, M. Que, Z. Peng, H. Wang, C. F. Pan, “A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics.” Adv. Mater., vol. 30, p. 1706738, 2018.
    [51] S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, “Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications.” Adv. Mater., vol. 33, p. 2005902, 2021.
    [52] J. Li, Z. Ma, H. Wang, X. Gao, Z. Zhou, R. Tao, L. Pan, Y. Shi, “Skin-Inspired Electronics and Its Applications in Advanced Intelligent Systems.” Adv. Intell. Syst., vol. 1, p. 1900063, 2019.
    [53] K. Dong, Z. Wu, J. Deng, A. C. Wang, H. Zou, C. Chen, D. Hu, B. Gu, B. Sun, Z. L. Wang, “A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing.” Adv. Mater., vol. 30, p. 1804944, 2018.
    [54] L. Wang, W. A. Daoud, “Highly Flexible and Transparent Polyionic-Skin Triboelectric Nanogenerator for Biomechanical Motion Harvesting.” Adv. Energy Mater., vol. 9, p. 1803183, 2019.
    [55] K. Dong, J. Deng, Y. Zi, Y. C. Wang, C. Xu, H. Zou, W. Ding, Y. Dai, B. Gu, B. Sun, Z. L. Wang, “3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors.” Adv. Mater., vol. 29, p. 1702648, 2017.
    [56] G. X. Liu, W. J. Li, W. B. Liu, T. Z. Bu, T. Guo, D. D. Jiang, J. Q. Zhao, F. B. Xi, W. G. Hu, C. Zhang, “Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting.” Adv. Sustainable Syst., vol. 2, p. 1800081, 2018.
    [57] L. Wang, W. Liu, Z. Yan, F. Wang, X. Wang, “Stretchable and Shape-Adaptable Triboelectric Nanogenerator Based on Biocompatible Liquid Electrolyte for Biomechanical Energy Harvesting and Wearable Human–Machine Interaction.” Adv. Funct. Mater., vol. 31, p. 2007221, 2021.
    [58] S. Siddiqui, H. B. Lee, D. Kim, L. T. Duy, A. Hanif, N. E. Lee, “An Omnidirectionally Stretchable Piezoelectric Nanogenerator Based on Hybrid Nanofibers and Carbon Electrodes for Multimodal Straining and Human Kinematics Energy Harvesting.” Adv. Energy Mater., vol. 8, p. 1701520, 2018.
    [59] C. Wu, A. C. Wang, W. Ding, H. Guo, Z. L. Wang, “Triboelectric Nanogenerator: A Foundation of the Energy for the New Era.” Adv. Energy Mater., vol. 9, p. 1802906, 2019.
    [60] F. F. Hatta, M. A. S. M. Haniff, M. A. Mohamed, “A review on applications of graphene in triboelectric nanogenerators.” Int J Energy Res., vol. 46, pp. 544- 576, 2022.
    [61] G. Khandelwal, N. P. M. J. Raj, S. J. Kim, “Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators.” Adv. Energy Mater., vol. 11, p. 2101170, 2021.
    [62] N. Kaur, K. Pal, “Triboelectric Nanogenerators for Mechanical Energy Harvesting.” Energy Technol., vol. 6, pp. 958, 2018.
    [63] R. Zhang, H. Olin. “Material choices for triboelectric nanogenerators: A critical review. “ EcoMat., 2020, 2, e12062.
    [64] A. Chen, C. Zhang, G. Zhu, Z. L. Wang, “Polymer Materials for High-Performance Triboelectric Nanogenerators.” Adv. Sci., vol. 7, p. 2000186, 2020.
    [65] C. Zhang, Z. Zhao, O. Yang, W. Yuan, L. Zhou, X. Yin, L. Liu, Y. Li, Z. L. Wang, J. Wang, “Bionic-Fin-Structured Triboelectric Nanogenerators for Undersea Energy Harvesting.” Adv. Mater. Technol., vol. 5, p. 2000531, 2020.
    [66] R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai, X. Liang, L. Xu, T. Jiang, X. Chen, Z. L. Wang, “Butterfly-Inspired Triboelectric Nanogenerators with Spring-Assisted Linkage Structure for Water Wave Energy Harvesting.” Adv. Mater. Technol., vol. 4, p. 1800514, 2019.
    [67] X. Wang, S. Niu, Y. Yin, F. Yi, Z. You, Z. L. Wang, “Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy.” Adv. Energy Mater., vol. 5, p. 1501467, 2015.
    [68] T. X. Xiao, X. Liang, T. Jiang, L. Xu, J. J. Shao, J. H. Nie, Y. Bai, W. Zhong, Z. L. Wang, “Spherical Triboelectric Nanogenerators Based on Spring-Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting.” Adv. Funct. Mater., vol. 28, p. 1802634, 2018.
    [69] B. D. Chen, W. Tang, C. He, C. R. Deng, L. J. Yang, L. P. Zhu, J. Chen, J. J. Shao, L. Liu, Z. L. Wang, “Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator.” Materials Today, vol. 21, no. 1, pp. 88-97, 2018.
    [70] Z. Wang, Z. Li, T. Yao, Z. Wang, H. Zhang, “A novel rotation detection method based on the capacitance principle and triboelectric effect.” Meas. Sci. Technol., vol. 32, p. 125114, 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE