| 研究生: |
周柏成 Chou, Po-Cheng |
|---|---|
| 論文名稱: |
三-五氮族與半導體性金屬氧化物系化學感測器之研究 Study of III-V Nitride and Semiconducting Metal-Oxide Based Chemical Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 氣體感測器 、蕭特基二極體 、氮化鋁鎵 、鈀 、鉑 、氧化鎳 、氧化鋅 |
| 外文關鍵詞: | gas sensor, Schottky diode, AlGaN, Pt, Pd, NiO, ZnO |
| 相關次數: | 點閱:131 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研製一系列高性能三-五氮族與半導體性金屬氧化物 之化學感測器,包含蕭特基二極體、電阻式元件及延伸式閘極場效電晶體。三-五氮族化合物半導體材料如: 氮化鋁鎵及氮化鎵系列材料,可用來當作感測平台。由於三-五氮族化合物半導體具有比矽材料較寬之能隙,因此,使用其製作而得之元件可適用於高溫環境之應用。此外,鉑和鈀分別對氨氣和氫氣具有良好的觸媒活性,可用來當作感測金屬。另一方面,半導體性金屬氧化物材料如: 氧化鎳及氧化鋅,前者對於酸鹼值及特定氣體具有良好的感測反應,並擁有極佳的化學穩定性及抗腐蝕性,極適合用來作為酸鹼值及氣體之感測薄膜;後者則對於二氧化氮氣體具有極佳的感測特性,適合用於特殊氣體感測用途。除了探討這些半導體式氣體感測器在不同溫度下對不同濃度的氣體之相關感測電性、偵測效能和動態表現,也深入研究氧化鎳酸鹼值感測器之感測效能及非理想效應。
首先, 我們以化學式無電鍍法製備鉑/氮化鋁鎵/氮化鎵蕭特基二極體式氨氣感測器。我們利用熱離子發射方程式描述感測器於氨氣環境下之電壓-電流特性,並且經由該方程式求得二極體之蕭特基位障高,可以觀察到會隨著不同濃度之氨氣而改變。我們從感測器之二極體參數、感測響應、響應時間方面探討元件之氨氣感測行為。
其次,研究具奈米結構之鈀/氮化鋁鎵/氮化鎵蕭特基二極體之氫氣感測特性。首先,第一種結構利用塗佈二氧化矽奈米粒子於鈀感測層與氮化鋁鎵之間,以形成鈀/二氧化矽/氮化鋁鎵(金屬/氧化物/半導體)的氫氣感測器,不僅可防止鈀與氮化鋁鎵間的相互擴散,獲得一個品質較佳的金半界面,也藉由二氧化矽奈米粒子獲得較大的比表面積,使得氣體感測特性大幅提升。另一方面,我們成功將聚苯乙烯奈米球以蒸鍍舉離方式製備出角錐形之鈀奈米結構,此一結構可有效增加感測層之比表面積,而氣體吸附座也會隨之增加。並在不同氫氣濃度與溫度環境下,分析兩種類型感測器之氫氣感測行為。
接著,研製氧化鎳薄膜延伸式閘極場效電晶體式酸鹼值感測器與電阻式氣體感測器。將延伸式閘極感測元件置於不同酸鹼值之磷酸緩衝溶液中,藉由感測元件之三端電流-電壓特性曲線變化,以探討各種濺鍍參數與後退火對感測特性之影響。此外,我們將氧化鎳薄膜沉積於指叉式電極上,以製備電阻式氣體感測器,探討並分析在不同溫度下感測元件之氫氣與氨氣感測行為。
最後, 探討以氧化鋅奈米粒子研製電阻式氣體感測器對二氧化氮之感測特性。利用氧化鋅奈米粒子提升感測元件的比表面積,進一步使得氣體吸附座增加,因此,元件之氣體感測特性有效地改善。由實驗結果得知,該元件在高溫環境下,不但對於高濃度二氧化氮具有極佳的感測靈敏度,也可偵測到極低濃度的二氧化氮。由於本論文所研製之元件呈現良好之感測效能,且製程方式與微機電系統製程相容,因此,本研究之感測元件在高效能感測器與微機電系統整合方面極具潛力。
In this dissertation, a series of high performance III-V nitride compound and semiconducting metal-oxide based chemical sensors, including Schottky diodes, resistors, and extended-gate field-effect transistors (EGFETs), are fabricated and studied. III-V nitride compound semiconductors, such as AlGaN- and GaN-based materials, serve as sensing platforms. Since these materials have larger band gaps, the fabricated devices are suitable for high-temperature operation. In addition, Pt and Pd are used as sensing metals because of their good catalytic activity toward ammonia and hydrogen gases, respectively. On the other hand, metal-oxide semiconductor, such as NiO- and ZnO- based materials, serve as a sensing membrane. The NiO sensing membrane demonstrates excellent pH sensing and specific gas sensing characteristics, good chemical stability, and corrosion resistance. The ZnO sensing membrane shows excellent performance for NO2 sensing. Therefore, the NiO-based material is suitable for high-performance pH sensing applications, and both NiO- and ZnO-based materials can be used as specific gas sensing membranes. Electrical characteristics and sensing performance of the studied gas sensors are investigated at different temperatures and gas concentrations. Furthermore, pH sensing properties and non-ideal effects of the studied NiO-based pH sensor are studied.
First, a chemically electroless plated (EP) Pt/AlGaN/GaN Schottky diode-type ammonia sensor is fabricated and studied. The thermionic emission (TE) equation is employed to characterize the current-voltage (I-V) behaviors of the studied EP device upon introduction of ammonia gases. The Schottky barrier height extracted from the TE equation is found to be sensitive to ammonia gases under various concentrations. Ammonia sensing behaviors of the studied EP device are investigated in terms of those diode parameters, sensing responses, and response times.
Second, the hydrogen sensing characteristics of Pd/AlGaN/GaN Schottky diodes with nanostructures are investigated. Pd/SiO2/AlGaN (metal/oxide/semiconductor) hydrogen sensors, prepared by spin-coating SiO2 nanoparticles between Pd and AlGaN layers, are fabricated. Due to the observation of a better junction quality and a higher surface roughness, hydrogen sensing properties of the studied device can be improved. On the other hand, a Pd pyramid-like nanostructure is successfully made by thermal evaporation and lift-off processes with PS nanospheres. This structure can efficiently increase the surface-area-to-volume ratio which caused the more active adsorbing sites. Analyses of the sensing properties of the studied devices with nanostructures at different temperatures and hydrogen concentrations are presented, respectively.
Third, NiO thin film-based extended-gate field-effect transistor (EGFET)-type pH sensors and a resistor-type gas sensor, prepared by the radio-frequency (RF) sputtering process, are fabricated and studied. The influences of various sputtering conditions and post-annealing are investigated by I-V curves variation of studied EGFET-type devices when immersing in different pH buffer solutions. Moreover, a NiO thin film-based resistor-type gas sensor, deposited on interdigitated electrodes, is fabricated. Hydrogen and ammonia sensing behaviors of the studied resistor-type device are analyzed and investigated at different temperatures.
Finally, the nitride oxide (NO2) sensing performance of ZnO nanoparticles (NPs)-based sensors is demonstrated and investigated. ZnO NPs are employed to the increase surface-area-to-volume ratio of the studied device which causes more active adsorbed sites. Thus, an enhanced sensing performance can be observed. Experimentally, the studied devices exhibits excellent sensing responses towards high NO2 concentration and a low detection limit at high temperatures. Based on good results and compatibility of these sensing devices in this dissertation, the studied devices are promising for the integration of high-performance sensor and micro-electro-mechanical-systems (MEMS).
References
1. B. Timmer, W. Olthusi, and A. Berg, “Ammonia sensors and their applications-a review,” Sens. Actuators B, vol. 107, pp. 666-677, 2005.
2. P. C. Chou, H. I. Chen, I- P. Liu, C. W. Hung, C. C. Chen, J. K. Liou, and W. C. Liu, “Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor,” Sens. Actuators B, vol. 203, pp. 258-262, 2014.
3. I. Dincer, “Environmental and sustainability aspects of hydrogen and fuel cell systems,” Int. J. Energy Res., vol. 31, pp. 29-55, 2007.
4. T. J. Fawcett, J. T. Wolan, A. L. Spetz, M. Reyes, and S. E. Saddow, “Thermal detection mechanism of SiC based hydrogen resistive gas sensors,” Appl. Phys. Lett., vol. 89, p. 182102, 2006.
5. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science, vol. 293, pp. 2227-2231, 2001.
6. M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld, and O. Ambacher, “A study of hydrogen sensing performance of Pt-GaN Schottky diodes,” IEEE Sens. J., vol. 6, pp. 1115-1119, 2006.
7. Z. Zhao, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B, vol. 113, pp. 532-538, 2006.
8. S. Y. Chiu, H. W. Huang, K. C. Liang, T. H. Huang, K. P. Liu, J. H. Tsai, and W. S. Lour, “High sensing response Pd/GaN hydrogen sensors with a porous-like mixture of Pd and SiO2,” Electron. Lett., vol. 45, pp. 231-232, 2009.
9. I. Sayago, E. Terrado, E. Lafuente, M. C. Horrillo, W. K. Master, A. M. Benito, R. Navarro, E. P. Urriolabeitia, M. T. Martinez, and J. Gutierrez, “Hydrogen sensors based on carbon nanotubes thin films ,” Synth. Metals, vol. 148, pp. 15-19, 2005.
10. H. Meixner, J. Gerblinger, U. Lampe, and M. Fleischer, “Thin-film gas sensors based on semiconducting metal oxides,” Sens. Actuators B, vol. 23, pp. 119-125, 1995.
11. H. Minoura and A. Ito, “Observation of the primary NO2 and NO oxidation near the trunk road in Tokyo,” Atmos. Environ., vol. 44, pp. 23-29, 2010.
12. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1990.
13. K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
14. C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a new Pt/InAlAs Schottky diode-type sensor,” Sens. Actuators B, vol. 128, pp. 574-580, 2008.
15. J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes,” Sens. Actuators B, vol. 117, pp. 151-158, 2006.
16. F. Rahimi and A. Irajizad, “Effective factors on Pd growth on porous silicon by electroless-plating: Response to hydrogen,” Sens. Actuators B, vol. 115, pp. 164-169, 2006.
17. D. Davazoglou and T. Dritsas, “Fabrication and calibration of a gas sensor based on chemically vapor deposited WO3 films on silicon substrates application to H2 sensing,” Sens. Actuators B, vol. 77, pp. 359-362, 2001.
18. P. Salomonsson, E. Jobson, B. Haggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
19. I. Lundstrom, “Hydrogen sensitive MOS-structures part1: principle and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
20. L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol. 138, pp. 159-162, 1991.
21. B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection,” Sens. Actuators B, vol. 104, pp. 232-236, 2005.
22. J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of Pd/GaN Schottky diodes,” Sens. Actuators B, vol. 123, pp. 1040-1048, 2007.
23. J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005.
24. H. Hasegawa and M. Akazawa, “Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering,” J. Vac. Sci. Technol. B, vol. 25, pp. 1495-1503, 2007.
25. H. T. Wang, T. J. Anderson, B. S. Kang, F. Ren, C. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabiran, “Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts,” Appl. Phys. Lett., vol. 90, p. 252109, 2007.
26. W. C. Liu, H. J. Pen, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
27. J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics Technol. Lett., vol. 15, pp. 1141-1143, 2003.
28. S. T. Sheppard, K. Doversoike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulting silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
29. R. Gaska, Q. Chen, J. Yang, A. Qsinsky, M. Asifkhan, and M. S. Shur, “High-temperature performance of AlGaN/GaN HEMT’s on SiC substrates,” IEEE Photonics Technol. Lett., vol. 18, pp. 492-494, 1997.
30. Y. Takao, K. Miyazaki, Y. Shimizu, and M. Egashira, “High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes,” J. Electrochem. Soc., vol. 141, pp. 1028-1034, 1994.
31. Y. Shimizu, A. Jono, T. Hyodo, and M. Egashira, “Preparation of large mesoporous SnO2 powder for gas sensor application,” Sens. Actuators B, vol. 108, pp. 56-61, 2005.
32. C. S. Rout, M. Hegde, A. Govindaraj, and C. N. R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, p. 205504, 2007.
33. H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors effects of preparation and pretreatment conditions,” Sens. Actuators B, vol. 108, pp. 467-472, 2005.
34. T. Hyodo, N. Nishida, Y. Shimizu, and M. Egashira, “Preparation and gas-sensing properties of thermally stable mesoporous SnO2,” Sens. Actuators B, vol. 83, pp. 209-215, 2002.
35. C. W. Lin, H. I. Chen, T. Y. Chen, C. C. Huang, C. S. Hsu, and W. C. Liu, “Ammonia sensing characteristics of sputtered indium tin oxide (ITO) thin films on quartz and sapphire substrates,” IEEE Trans. Electron Devices, vol. 58, pp. 4407-4413, 2011.
36. K. K. Makhila, A. Ray, R. M. Patel, and U. B. Trivedi, “Indium oxide thin film based ammonia gas and ethanol vapor sensor” Bull. Mater. Sci., vol. 28, pp. 9-17, 2005.
37. E. Hopirtean, “Preparation and operation of potentiometric electrochemical sensors-pH glass-electrode,” Rev. Chem-Bucharest, vol. 39, pp. 1133-1140, 1988.
38. P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B, vol. 88, pp. 1-20, 2003.
39. J. Vanderspiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemically sensitive field-effect transistor as multi-species microprobe,” Sens. Actuators, vol. 4, pp. 291-298, 1983.
40. E. M. Guerra and M. Mulato, “Synthesis and characterization of vanadium oxide/hexadecylamine membrane and its application as pH-EGFET sensor,” J. Sol-Gel Sci. Techn., vol. 52, pp. 315-320, 2009.
41. P. D. Batista and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors,” Appl. Phys. Lett., vol. 87, p. 143508, 2005.
42. N. C. S. Vieira, A. Figueiredo, A. D. Faceto, A. A. A. de Queiroz, V. Zucolotto, and F. E. G. Guimarães, “Dendrimers/TiO2 nanoparticles layer-by-layer films as extended gate FET for pH detection,” Sens. Actuators B, vol. 169, pp. 397-400, 2012.
43. C. S. Lai, T. F. Lu, C. M. Yang, Y. C. Lin, D. G. Pijanowska, and B. Jaroszewicz, “Body effect minimization using single layer structure for pH-ISFET applications,” Sens. Actuators B, vol. 143, pp. 494-499, 2010.
44. Y. H. Liao and J. C. Chou, “Fabrication and characterization of a ruthenium nitride membrane for electrochemical pH sensors,” Sensors-Basel, vol. 9, pp. 2478-2490, 2009.
45. C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusik, “Personal ammonia sensor for industrial environments,” J. Environ. Monit., vol. 1, pp. 417-422, 1999.
46. M. A. Chougule, S. G. Pawar, S. L. Patil, B. T. Raut, P. R. Godse, S. Sen, and V. B. Patil, “Polypyrrole thin film: room temperature ammonia gas sensor,” IEEE Sens. J., vol. 11, pp. 2137-2141, 2011.
47. W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators B, vol. 110, pp. 252-259, 2005.
48. C. W. Lin, H. I. Chen, T. Y. Chen, C. C. Huang, C. S. Hsu, R. C. Liu, and W. C. Liu, “On an indium-tin-oxide thin film based ammonia gas sensor,” Sens. Actuators B, vol. 160, pp. 1481-1484, 2011.
49. D. S. Sutar, N. Padma, D. K. Aswal, S. K. Deshpande, S. K. Gupta, and J. V. Yakhmi, “Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor,” Sens. Actuators B, vol. 128, pp. 286-292, 2007.
50. T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, “Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode,” Sens. Actuators B, vol. 155, pp. 347-350, 2011.
51. H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 1130-1138, 1986.
52. H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
53. H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an elecroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
54. T. H. Tsai, J. R. Huang, K. W. Lin, W. S. Hsu, H. I. Chen, and W. C. Liu, “Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode,” Sens. Actuators B, vol. 129, pp. 292-302, 2008.
55. S. Y. Chiu, J. H. Tsai, H. W. Huang, K. C, Liang, T. H. Huang, K. P. Liu, T. M. Tsai, K. Y. Hsu, and W. S. Lour, “Hydrogen sensors with double dipole layers using a Pd-mixture-Pd triple-layer sensing structure,” Sens. Actuators B, vol. 141, pp. 532-537, 2009.
56. P. S. C. Hung, W. Y. Woon, S. M. Lan, F. Ren, and S. J. Pearton, “Characteristics of carbon sensors made by polar and nonpolar zinc oxide nanoeires gated AlGaN/GaN high electron mobility transistor,” Appl. Phys. Lett., vol. 103, p. 083506, 2013.
57. C. F. Lo, Y. Y. Xi, L. Liu, S. J. Pearton, S. Dore, C. H. Hsu, A. M. Dabiran, P. P. Chow, and F. Ren, “Effect of temperature on CO sensing response in air ambient by using ZnO nanorod-gated AlGaN/GaN high electron mobility transistors,” Sens. Actuators B, vol. 176, pp. 708-712, 2013.
58. Y. Irokawa, B. Luo, F. Ren, C. C. Pan, G. T. Chen, J. I. Chyi, S. S. Park, Y. J. Park, and S. J. Pearton, “DC characteristics of AlGaN/GaN heterostructire field-effect transistors on freestanding GaN substrates,” Electrochem. Solid State Lett., vol. 7, pp. G8-G10, 2004.
59. A. Li, G. Xiong, J. Gu, and L. Zheng, “Preparation of Pd/ceramic composite membrane. 1. Improvement of the conventional preparation technique,” J. Membrane Sci., vol. 110, pp. 257-260, 1996.
60. J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, H. I. Chen, and W. C. Liu, “Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode,” IEEE Sens. J., vol. 11, pp. 1194-1200, 2011.
61. B. R. Camacho, C. Morais, M. A. Valenzuela, and N. Alonso-Vante, “Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites,” Catal. Today, vol. 202, pp. 36-43, 2013.
62. P. K. Sekhar, A. Sine, and S. Bhansali, “Effect of varying the nanostructured porous-Si process parameters on the performance of Pd-doped hydrogen sensor,” Sens. Actuators B, vol. 127, pp. 74-81, 2007.
63. R. Pandeeswari and B. G. Jeyaprakash, “High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influence factors at room temperature,” Sens. Actuators B, vol. 195, pp. 206-214, 2014.
64. V. Talwar, O. Singh, and R. C. Singh, “ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor,” Sens. Actuators B, vol. 191, pp. 276-282, 2014.
65. T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Comprehensive study on hydrogen sensing properties of a Pd-AlGaN-based Schottky diode,” Int. J. Hydrogen Energ., vol. 33, pp. 2986-2992, 2008.
66. T. H. Tsai, H. I. Chen, T. Y. Chen, L. Y. Chen, Y. J. Liu, C. C. Huang, K. S. Hsu, and W. C. Liu, “Hydrogen sensing properties of a Pd/oxide/InAlAs metamorphic-based transistor,” Int. J. Hydrogen Energ., vol. 35, pp. 3903-3907, 2010.
67. C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, and W. C. Liu, “Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET),” Sens. Actuator B, vol. 132, pp. 587-592, 2008.
68. S. T. Hung, C. J. Chang, C. H. Hsu, B. H. Chu, C. F. Lo, C. C. Hsu, S. J. Pearton, M. R. Holzworth, P. G. Whiting, N. G. Rudawski, K. S. Jones, A. Dabiran, P. Chow P, and F. Ren, “SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications,” Int. J. Hydrogen Energ., vol. 37, pp. 13783-13788, 2012.
69. Q. N. Abdullah, F. K. Yam, J. J. Hassan, C. W. Chin, Z. Hassan, and M. Bououdina, “High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique,” Int. J. Hydrogen Energ., vol. 38, pp. 14085-14101, 2013.
70. H. Kim and S. Jang, “AlGaN/GaN HEMT based hydrogen sensor with platinum nanonetwork gate electrode,” Curr. Appl. Phys., vol. 13, pp. 1746-1750, 2013.
71. J. H. Melby, R. F. Davis, and L. M. Porter, “Modeling the electrical response of hydrogen sensors based on AlGaN/GaN high-electron-mobility transistors,” ECS J. Solid State Sci., vol. 2, pp. Q214-219, 2013.
72. G. Zhibo G, W. Lai, H. Zhibiao, and L. Yi, “Modeling and experimental study on sensing response of an AlGaN/GaN HEMT-based hydrogen sensor,” Sens. Actuator B, vol. 176, pp. 241-247, 2013.
73. C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “On an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)-type hydrogen gas sensor,” IEEE Electron Device Lett., vol. 33, pp. 788-790, 2012.
74. H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuator B, vol. 85, pp. 10-8, 2002.
75. T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J. S. Wu, P. C. Chou, and W. C. Liu, “ZnO-nanorod-based ammonia gas sensors with underlying Pt/Cr interdigitated electrodes,” IEEE Electron Device Lett., vol. 33, pp. 1486-1488, 2012.
76. B. Sushmee, V. M. Nosang, and M. Ashok, “Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds,” Talanta, vol. 123, pp. 109-114, 2014.
77. J. W. Deng, J. M. Ma, L. Mei, Y. J. Tang, Y. J. Chen, T. Lv, Z. Xu, and T. H. Wang, “Porous alpha-Fe2O3 nanosphere-based H2S sensor with fast response, high selectivity and enhanced sensitivity,” J. Mater. Chem. A, vol. 1, pp. 12400-12403, 2013.
78. B. H. Jang, O. Landau, S. J. Choi, J. Shin, A. Rothschild, and I. D. Kim, “Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature,” Sens. Actuator B, vol. 188, pp. 156-168, 2013.
79. C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu, “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor,” IEEE Electron Device Lett., vol. 27, pp. 951-954, 2006.
80. T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, C. F. Chang, C. W. Hung, L. Y. Chen, T. P. Chen, Y. C. Liu, and W. C. Liu, “SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode,” Sens. Actuator B, vol. 136, pp. 338-343, 2009.
81. T. H. Tsai, H. I. Chen, C. F. Chang, P. S. Chiu, Y. C. Liu, L. Y. Chen, T. P. Chen, and W. C. Liu, “Hydrogen sensing properties of a metamorphic high electron mobility transistor,” Appl. Phys. Lett., vol. 94, p. 012102, 2009.
82. E. L. Murphy and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region,” Phys. Rev., vol. 102, pp. 1464-1473, 1956.
83. J. Kuzmík, P. Javorka, M. Marso, and P. Kordos, “Annealing of Schottky contacts deposited on dry etched AlGaN/GaN,” Semicond. Sci. Technol., vol. 17, pp. L76-78, 2002.
84. T. Y. Chen, H. I. Chen, C. C. Huang, C. S. Hsu, P. S. Chiu, P. C. Chou, and W. C. Liu, “Improved hydrogen-sensing performance of a Pd/GaN Schottky diode with a surface plasma treatment approach,” Sens. Actuator B, vol. 159, pp.159-162, 2011.
85. C. S. Hsu, K. W. Lin, H. I. Chen, T. Y. Chen, C. C. Huang, P. C. Chou, R. C. Liu , and W. C. Liu, “On a heterostructure field-effect transistor (HFET) based hydrogen sensing system,” Int. J. Hydrogen Energ., vol. 36, pp. 15906-15912, 2011.
86. A. H. Zhong, T. Sasaki, and K. Hane, “Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and on a planar GaN film,” Int. J. Hydrogen Energ., vol. 39, pp. 8564-8575, 2014.
87. A. Esfandiar, A. Irajizad, O. Akhavan, S. Ghasemi, and M. R. Gholami, “Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors,” Int. J. Hydrogen Energ., vol. 39, pp. 8169-8179, 2014.
88. G. W. Hyung, S. J. Lee, H. W. Lee, J. R. Koo, J. Park, W. Y. Kim, Y. S. Kim, and Y. K. Kim, “Efficient hole injection for top-emitting organic light-emitting diodes using nickel oxide by oxygen plasma treatment,” Jpn. J. Appl. Phys., vol. 50, p. 112101, 2011.
89. S. V. Green, M. Watanabe, N. Oka, G. A. Niklasson, C. G. Granqvist, and Y. Shigesato, “Electrochromic properties of nickel oxide based thin films sputter deposited in the presence of water vapor,” Thin Solid Films, vol. 520, pp. 3839-3842, 2012.
90. S. V. Green, M. Watanabe, N. Oka, G. A. Niklasson, C. G. Granqvist, and Y. Shigesato, “Electrochromic properties of nickel oxide based thin films sputter deposited in the presence of water vapor,” Thin Solid Films, vol. 520, pp. 3839-3842, 2012.
91. H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, “H2 gas sensor performance of NiO at high temperatures in gas mixtures,” Sens. Actuators B, vol. 151, pp. 162-168, 2010.
92. I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, and V. Rehacek, “Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification,” Sens. Actuators B, vol. 103, pp. 300-311, 2004.
93. P. V. Tong, N. D. Hoa, N. V. Duy, V. V. Quang, N. T. Lam, and N. V. Hieu, “In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors,” Int. J. Hydrogen Energ., vol. 38, pp. 12090-12100, 2013.
94. A. M. Soleimanpour, S. V. Khare, and A. H. Jayatissa, “Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation,” ACS Appl. Mater. Inter., vol. 4, pp. 4651-4657, 2012.
95. I. Hotovy, J. Huran, L. Spiess, H. Romanus, D. Buc, and R. Kosiba, “NiO-based nanostructured thin films with Pt surface modification for gas detection,” Sens. Actuators B, vol. 515, pp. 658-61, 2006.
96. B. Miao, W. Zeng, L. Lin, and S. Xu, “Characterization and gas-sensing properties of NiO nanowires prepared through hydrothermal method,” Physica E, vol. 52, pp. 40-45, 2013.
97. S. K. Lee, Y. S. Sohn, and S. Y. Choi, “Fabrication characteristics of Al2O3 pH-ion sensitive field effect transistor fabricated using atomic layer deposition and sputter,” Sensor Lett., vol. 9, pp. 3-6, 2011.
98. A. S. Poghossian, “Method of fabrication of ISFET-based biosensors on an Si-SiO2-Si structure,” Sens. Actuators B, vol. 44, pp. 361-364, 1997.
99. S. Jamasb, S. D. Collins, and R. L. Smith, “A physical model for threshold voltage instability in Si3N4-gate H+-sensitive FET’s (pH ISFET’s),” IEEE Trans. Electron Devices, vol. 45, pp. 1239-1245, 1998.
100. P. Y. Yang, J. L. Wang, P. C. Chiu, J. C. Chou, C. W. Chen, H. H. Li, and H. C. Cheng, “pH sensing characteristics of extended-gate field-effect transistor based on Al-doped ZnO nanostructures hydrothermally synthesized at low temperatures,” IEEE Electron Device Lett., vol. 32, pp. 1603-1605, 2011.
101. H. H. Li, W. S. Dai, J. C. Chou, and H. C. Cheng, “An extended-gate field-effect transistor with low-temperature hydrothermally synthesized SnO2 nanorods as pH sensor,” IEEE Electron Device Lett., vol. 33, pp. 1495-1497, 2012.
102. T. Y. Kim and S. Yang, “Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing,” Sens. Actuators B, vol. 196, pp. 31-38, 2014.
103. J. L. Chiang, S. S. Jhan, S. C. Hsieh, and A. L. Huang, “Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system,” Thin solid films, vol. 517, pp. 4805-4809, 2009.
104. E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method,” Solid State Sci., vol. 11, pp. 456-460, 2009.
105. M. Tyagi, M. Tomar, and V. Gupta, “Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor,” Anal. Chim. Acta, vol. 725, pp. 93-101, 2012.
106. S. Y. Yang, C. W. Chen, and J. C. Chou, “Investigation on the sensitivity of TiO2:Ru pH sensor by Taguchi design of experiment,” Solid State Electron, vol. 77, pp. 82-86, 2012.
107. G. M. Da Silva, S. G. Lemos, L. A. Pocrifka, P. D. Marreto, A. V. Rosario, and E. C. Pereira, “Development of low-cost metal oxide pH electrodes based on the polymeric precursor method,” Anal. Chim. Acta, vol. 77, pp. 36-41, 2008.
108. M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering,” J. Am. Ceram. Soc., vol. 59, pp. 4-8, 1976.
109. D. Buso, M. Guglielmi, A. Martucci, C. Cantalini, M. L. Post, and A. Hache, “Porous sol gel silica films doped with crystalline NiO nanoparticles for gas sensing applications,” J. Sol-Gel Sci. Technol., vol. 40, pp. 299-308, 2006.
110. C. S. Hsu, H. I. Chen, C. W. Lin, T. Y. Chen, C. C. Huang, P. C. Chou, and W. C. Liu, “Ammonia gas sensing performance of an indium tin oxide (ITO) based device with an underlying Au-nanodot layer,” J. Electrochem. Soc., vol. 160, pp. B17-B22, 2014.
111. J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Yan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “A two-step hydrothermally grown ZnO microtube array for CO gas sensing,” Appl. Phys. A, vol. 88, pp. 611-615, 2007.
112. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams, and I. P. Parkin, “A microstructural model of semiconducting gas sensor response: The effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide,” Sens. Actuators B, vol. 114, pp. 969-977, 2006.
113. I. D. Kim, A. Rothschild, T. Hyodo, and H. L. Tuller, “Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 films,” Nano Lett., vol. 6, pp. 193-198, 2006.
114. A. Sadek, S. Choopun, W. Wlodarski, S. Ippolito, and K. Kalantar-Zadeh, “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing,” IEEE Sensors J., vol. 7, pp. 919-924, 2007.
115. S. G. Pawar, M. A. Chougule, S. L. Patil, B. T. Raut, P. R. Godse, S. Sen, and V. B. Patil, “Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite,” IEEE Sensors J., vol. 11, no. 12, pp. 3417-3423, 2011.
116. S. K. Lee, D. Chang, and S. W. Kim, “Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection,” J. Hazard. Mater., vol. 268, pp. 110-114, 2014.
117. Y. Wang, W. Z. Jia, T. Strout, A. Schempf, H. Zhang, B. K. Li, J. H. Cui, and Y. Lei, “Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers,” Electroanal., vol. 21, pp. 1432-1438, 2009.
118. G. Wang, Y. Ji, X. R. Huang, X. Q. Yang, P. I. Gouma, and M. Dudley, “Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing,” J. Phys. Chem. B, vol. 110, pp. 23777-23782, 2006.
119. J. S. Su, W. C. Hsu, W. Lin, and S. Y. Jain, “High-breakdown characteristics of the InP-based heterostructure field-effect transistor with In0.34Al0.66As0.85Sb0.15 Schottky layer,” IEEE Electron Device Lett., vol. 19, pp. 195-197, 1998.
120. C. C. Chen, H. I. Chen, P. C. Chou, J. K. Liou, Y. J. Chiou, J. H. Tsai, and W. C. Liu, “Performance enhancement on an InGaP/InGaAs PHEMT with an electrophoretic deposition gate structure,” IEEE Electron Device Lett., vol. 35, pp. 18-20, 2014.
121. C. C. Huang, H. I. Chen, I. P. Liu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “Comprehensive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET),” Sens. Actuators B, vol. 190, pp. 913-921, 2014.
122. H. R. Chen, A. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “InGaP/InGaAs pseudomorphic heterodoped-channel FETs with a field plate and a reduced gate length by splitting gate metal,” IEEE Electron Device Lett., vol. 27, pp. 948-950, 2006.
123. T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, P. S. Chiu, C. F. Chang, L. Y. Chen, T. P. Chen, Y. J. Liu, and W. C. Liu, “On a Pd/InAlAs metamorphic high electron mobility transistor (MHEMT)-based hydrogen sensor,” Sens. Actuators B, vol. 139, pp. 310-316, 2009.
124. R. E. G. Vanhal, J. C. T. Eijkel, and P. Bergveld, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters,” Sens. Actuators B, vol. 24-25, pp. 201-205, 1995.
125. D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., vol. 70, pp. 1807-1818, 1974.
126. A. G. Brinkman, “A double-layer model for ion adsorption onto metal oxides, applied to experimental data and to natural sediments of Lake Veluwe, The Netherlands,” Hydrobiologia, vol. 253, pp. 31-45, 1993.
127. A. Garde, J. Alderman, and W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment,” Sens. Actuators B, vol. 26-27, pp. 341-344, 1995.
128. K. Koski, J. Hölsä, and P. Juliet, “Properties of zirconium oxide thin films deposited by pulsed reactive magnetron sputtering,” Surf. Coat. Tech., vol. 120-121, pp. 303-312, 1999.
129. K. S. Kim and N. Winograd, “X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment,” Surf. Sci., vol. 43, pp. 625-643, 1974.
130. H. L. Chen, Y. M. Lu, and W. S. Hwang, “Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films,” Mater. Trans., vol. 46, pp. 872-879, 2005.
131. H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique,” IEEE Trans. Electron Devices, vol. 60, pp. 213-220, 2013.
132. H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “A simple gate-dielectric fabrication process for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility-transistors,” IEEE Electron Device Lett., vol. 33, pp. 997-999, 2012.
133. C. S. Hsu, H. I. Chen, P. C. Chou, J. K. Liou, C. C. Chen, C. F. Chang, and W. C. Liu, “Hydrogen sensing properties of a Pd/AlGaN/GaN based field-effect transistor under a nitrogen ambience,” IEEE. Sensors J., vol. 13, pp. 1787-1793, 2013.
134. B. R. Huang and T. C. Lin, “Leaf-like carbon nanotube/nickel composite membrane extended-gate field-effect transistors as pH sensor,” Appl. Phys. Lett., vol. 99, p. 023108, 2011.
135. J. C. Chou and Y. F. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method,” Sens. Actuators B, vol. B86, pp. 58-62, 2002.
136. T. M. Pang, M. D. Huang, W. Y. Lin, and M. H. Wu, “A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor,” Anal. Chim. Acta, vol. 669, pp. 68-74, 2010.
137. Z. H. Li, X. J. Chang, X. J. Zou, X. B. Zhu, R. Nie, Z. Hu, and R. J. Li, “Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions,” Anal. Chim. Acta, vol. 632, pp. 272-277, 2009.
138. J .C. Chou, H. Y. Yang, and C. W. Chen, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system,” Microelectron. Reliab., vol. 50, pp. 753-756, 2010.
139. J. C. Lin, B. R. Huang, and Y. K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,” Sens. Actuators B, vol. 184, pp. 27-32, 2013.
140. A. Qureshi, A. Mergen, and A. Altindal, “Preparation and characterization of Li and Ti codoped NiO nanocomposites for gas sensors applications,” Sens. Actuators B, vol. 135, pp. 537-540, 2009.
141. S. R. Nalage, M. A. Chougule, S. Sen, and V. B. Patil, “Novel method for fabrication of NiO sensor for NO2 monitoring,” J. Mater. Sci-Mater. EL., vol. 24, pp. 368-375, 2013.
142. J. H. Jun, J. Yun, K. Cho, I. S. Hwang, J. H. Lee, and S. Kim, “Necked ZnO nanoparticle-based NO2 sensors with high and fast response”, Sens. Actuators B, vol. 140, pp. 412-417, 2009.
143. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, p 041301, 2005.
144. C. M. Ghimbeu, J. Schoonman, M. Lumbreras, and M. Siadat, “Electrostatic spray deposited zinc oxide films for gas sensor applications,” Appl. Surf. Sci., vol. 253, pp. 7483-7489, 2007.
145. H. J. Lim, D. Y. Lee, and Y. J. Oh, “Gas sensing properties of ZnO thin films prepared by microcontact printing,” Sens. Actuators A, vol. 125, pp. 405-410, 2006.
146. H. M. Lin, S. J. Tzeng, P. J. Hsiau, and W. L. Tsai, “Electrode effects on gas sensing properties of nanocrystalline zinc oxide,” Nanostruct. Mater., vol. 10, pp. 465-477, 1998.
147. A. Patil, C. Dighavkar, and R. Borse, “Al doped ZnO thick films as CO2 gas sensors,” J. Optoelectron. Adv. M., vol. 13, pp. 1331-1337, 2011.
148. S. L. Bai, L. Y. Chen, S. Chen, R. X. Luo, D. Q. Li, A. F. Chen, and C. C. Liu, “Reverse microemulsion in situ crystallizing growth of ZnO nanorods and application for NO2 sensor,” Sens. Actuators B, vol. 190, pp. 760-767, 2014.
149. C. Y. Lin, J. G. Chen, W. Y. Feng, C. W. Lin, J. W. Huang, J. J. Tunney, and K. C. Ho, “Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor,” Sens. Actuators B, vol. 157, pp. 361-367, 2011.
150. N. Matsunaga, G. Sakai, K. Shimanoe, and N. Yamazoe, “Diffusion equation-based study on thin film semiconductor gas sensor-response transient,” Sens. Actuators B, vol. 83, pp. 216-221, 2002.
151. G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B, vol. 80, pp. 125-131, 2001.
152. J. K. Liou, P. C. Chou, C. C. Chen, Y. C. Chang, W. C. Hsu, S. Y. Cheng, J. H. Tsai, and W. C. Liu, “Implementation of high-power GaN-based LEDs with a textured 3-D backside reflector formed by inserting a self-assembled SiO2 nanosphere monolayer,” IEEE Trans. Electron Devices, vol. 61, pp. 831-837, 2014.
153. H. Y. Liu, C. S. Lee, F. C. Liao, W. C. Hsu, B. Y. Chou, J. H. Tsai, and H. Y. Lee, “Comparative studies on AlGaN/GaN MOS-HEMTs with stacked La2O3/Al2O3 dielectric structures,” ECS J. Solid State SC., vol. 3, pp. N115-N119, 2014.
154. C. S. Hsu, K. W. Lin, and W. C. Liu, “A wireless-transfer based hydrogen gas sensing system with a Pd/AlGaN/GaN heterostructure field-effect transistor (HFET),” IEEE. Sensors J., vol. 13, pp. 2299-2304, 2013.
155. Y. Cao, W. Pan, Y. Zong, and D. Jia, “Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction,” Sens. Actuators B, vol. 138, pp. 480-484, 2009.
156. E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, “High-performance NO2 gas sensor based on ZnO nanorod growth by ultrasonic irradiation,” Sens. Actuators B, vol. 141, pp. 239-243, 2009.
157. Y. Min, H. L. Tuller, S. Palzer, J. Wöllenstein, and H. Böttner, “Gas response of reactively sputtered ZnO films on Si-based micro-array,” Sens. Actuators B, vol. 93, pp. 435-441, 2003.
158. P. S. Cho, K. W. Kim, and J. H. Lee, “NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method,” J. Electroceram., vol. 17, pp. 975-978, 2006.
159. T. Hyodo, S. Abe, Y. Shimizu, and M. Egashira, “Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof,” Sens. Actuators B, vol. 93, pp. 590-600, 2003.
160. E. Comini, G. Faglia, and G. Sberveglieri, “Stable and highly sensitive gas sensors based on semiconducting oxide nanoblets,” Appl. Phys. Lett., vol. 81, pp. 1869-1871, 2002.