簡易檢索 / 詳目顯示

研究生: 黃以芹
Huang, I-Chin
論文名稱: 一種具環繞式閘極與超薄通道之新穎場效電晶體及其模擬分析
Study of A Novel Gate-All-Around Ultra-Thin Body Field Effect Transistor (G-UTBFET)
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: 環繞式閘極超薄通道場效電晶體TCAD模擬製程變異靜態隨機存取記憶體
外文關鍵詞: Gate all around, Ultra-thin body, TCAD Simulation, Variation, 6T-SRAM
相關次數: 點閱:130下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於提升數位積體電路的速度、功能與降低製作成本要求下,元件尺寸持續微縮遂衍生諸多的短通道效應,造成元件特性劣化。為改善此問題,本論文提出一種具環繞式閘極(Gate-all-around, GAA)與超薄通道(Ultra-thin-body, UTB)之新穎場效電晶體,稱G-UTBFET,透過增加閘極對通道的控制能力與降低關閉狀態之漏電電流,有效改善元件短通道特性,使元件於7 nm製程節點仍可獲得極優異的性能。
    本論文所使用之半導體元件模擬軟體為Sentaurus TCAD,而供應電壓與等效氧化層厚度等參數皆參考2015國際半導體技術指標於7 nm節點之預測,為使分析結果更接近實際狀況,模擬時皆有加入量子效應相關之物理模型。
    本研究首先針對G-UTBFET於不同摻雜型態、結構參數以及絕緣柱材料下元件特性之分析,結果顯示反轉型或累積型的摻雜型態能夠獲得較佳的靜電特性,而使用較小的通道厚度、絕緣柱直徑以及較低介電係數之中央絕緣柱材料有助於提升G-UTBFET的元件特性。此外,若將源極延伸區與閘極正交疊(Overlap)、汲極延伸區與閘極負交疊(Underlap),除了能夠進一步優化元件之開關特性,也能在不改變閘極電容的狀態下提升元件之驅動電流並改善研本質延遲。我們亦將G-UTBFET與絕緣層上超薄通道場效電晶體及環繞式閘奈米線電晶體進行短通道特性的比較,不論係在7 nm或是更先進之技術節點,本論文所提出之G-UTBFET元件皆最具潛力。
    對於奈米級之電晶體元件,基於隨機摻雜擾動與製程所帶來的變異性將嚴重關係到其應用於積體電路上之可能性,本研究亦討論隨機摻雜變異及通道厚度變異對於G-UTBFET元件特性的影響。我們發現反轉型G-UTBFET由於通道為無摻雜,對於隨機摻雜擾動有較好的抑制能力,而無接面式G-UTBFET對於隨機摻雜擾動的變異性較為嚴重,主要是因為其通道內之雜質數目較少,元件特性對於雜質的分布位置變得更加敏感所致。另外,在通道厚度變異方面,反轉型與無接面式G-UTBFET皆具有有不錯的抗擾動能力,主要可歸因於G-UTBFET元件具有極佳的通道控制能力。本研究亦針對G-UTBFET結構之介面及通道缺陷對元件特性的影響進行分析,隨著缺陷位置靠近汲極其變異程度將會減弱,而缺陷位於「通道中央」及「通道-絕緣柱介面」上對於特性的影響又較缺陷位於「介電層-通道介面」來得大,因此如何控制及優化通道及其內側之品質對於G-UTBFET應用於電路上係相當重要的課題之一。
    最後,本研究也評估了G-UTBFET應用於反相器及6T靜態隨機存取記憶體之性能。於反相器應用方面,結果顯示結構參數的變化對於其雜訊邊界並較無太大之影響,但於6T-SRAM方面,改變通道厚或絕緣柱直徑可優化其讀寫效能,然而,此舉亦將改變電路之操作速度以及消耗功率,故在選擇參數時,除了在讀寫之間取捨外,也必須考慮其於操作速度及消耗功率上之代價。
    不論是於靜電特性或數位電路應用上,本論文所提出之G-UTBFET元件都具備較為優異之特性,對於新世代技術節點或摩爾定律之延伸將可提供助力。本論文已完成有關所提出G-UTBFET基本元件特性與重要參數之探討分析,研究成果可供半導體產業進行最適化製程之開發及更先進積體電路之應用參考。

    An advanced vertical FET comprising of a gate all around (GAA) and ultra-thin body (UTB) structure (called G-UTBFET) is proposed in this study. Simulation results based on Sentaurus TCAD considering quantum confinement effects are presented and discussed. Following 7 nm node technology, the proposed G-UTBFET shows the lowest values in Ioff, SS (64.2 mV/dec) and DIBL (13.3 mV/V) as compared with planar ultra-thin-body FET (UTBFET) and nanowire FET (NWFET), with an average reduction of 42%, 7.5%, and 40%, respectively, are achieved. The superiority in G-UTBFET performance is attributed to the realization of UTB nanotube (NT) via insulator pillar placement and strong enhancement in electrostatics with GAA configuration.

    中文摘要……I Abstract……IV 誌謝……XI 目錄……XII 表目錄……XV 圖目錄 XVII 第一章 緒論……1 1-1金氧半場效電晶體元件介紹與發展……2 1-1-1 MOSFET之操作原理……2 1-1-2 MOSFET於反相器之應用……6 1-1-3 MOSFET於靜態隨機存取記憶體之應用……8 1-1-4 MOSFET之挑戰與演進……13 1-2研究動機……15 1-3論文架構……21 第二章 G-UTBFET之元件設計及模擬環境……22 2-1 G-UTBFET元件結構之概念……22 2-2 G-UTBFET元件之製程規劃……24 2-2-1核心結構之製程……24 2-2-2閘極結構及金屬接線之製程……27 2-3元件模擬分析之工具及環境……29 2-4元件設計與參數萃取……30 第三章 G-UTBFET於新世代技術節點之特性模擬分析……35 3-1摻雜型態對元件靜電特性之影響……35 3-1-1傳統反轉型G-UTBFET之特性探討……37 3-1-2累積型與無接面式G-UTBFET之特性探討……40 3-2元件參數對電特性影響之探討……42 3-2-1通道厚度對元件特性的影響……43 3-2-2中央絕緣柱直徑對元件特性的影響……46 3-2-3中央絕緣柱材料對元件特性的影響……48 3-2-4源極/汲極延伸區對元件特性的影響……52 3-3 G-UTBFET與其他先進結構於新世代技術節點之特性比較……56 3-3-1 G-UTBFET與NWFET之電特性比較……56 3-3-2 G-UTBFET與UTBFET之電特性比較……59 3-3-3短通道效應抑制能力之比較……62 第四章 G-UTBFET於結構變異性之探討……64 4-1隨機摻雜擾動效應對G-UTBFET元件特性之影響……64 4-2結構尺寸參數變異對G-UTBFET元件特性之影響……69 4-3缺陷對G-UTBFET元件特性之影響……72 4-3-1缺陷實空間位置對於元件靜電特性之影響……72 4-3-2缺陷能階位置對於靜電特性之影響……75 第五章 G-UTBFET於反相器與靜態隨機存取記憶體之模擬分析……77 5-1 G-UTBFET應用於CMOS反相器之探討……77 5-2 G-UTBFET應用於靜態隨機存取記憶體之探討……83 5-2-1結構參數及材料對6T-SRAM性能之影響……85 5-2-2 G-UTBFET與其他先進結構於6T-SRAM之性能比較……88 第六章 結論及對未來研究之建議……90 6-1 結論……90 6-2 未來研究之建議……92 參考文獻……93 附錄……101 附錄A. 專利……102 附錄B. 會議論文……104

    [1] S. M. Sze, Semiconductor Device Physics and Technology, 2nd Ed., Wiley, 2001.
    [2] C. C. Hu, Modern Semiconductor Device for Integrated Circuits, Pearson, 2010.
    [3] E. Seevinck, F. List, and J. Lohstroh, “Static-Noise Margin Analysis of MOS SRAM Cells,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5, pp. 748–754, 1987.
    [4] B. Alorda, G. Torrens, S. Bota, and J. Segura, “Static and Dynamic Stability Improvement Strategies for 6T CMOS Low-Power SRAMs,” Design, Automation & Test In Europe Conference & Exhibition, 2010.
    [5] H. Makino, N. Okada, T. Matsumura, K. Nii, T. Yoshimura, S. Iwade, and Y. Matsuda, “Improved Evaluation Method for The SRAM Cell Write Margin by Word Line voltage Acceleration,” Circuits and Systems, vol. 03, no. 03, pp. 242–251, 2012.
    [6] R. E. Aly and M. A. Bayoumi, “Low-Power Cache Design Using 7T SRAM Cell,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 4, pp. 318–322, 2007.
    [7] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for Variability Tolerance and Low-voltage Operation In High-Performance Caches,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 956–963, 2008.
    [8] Z. Liu and V. Kursun, “Characterization of A Novel Nine-Transistor SRAM Cell,” IEEE Transactions On Very Large Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 488–492, 2008.
    [9] A. Islam and M. Hasan, “Leakage Characterization of 10T SRAM Cell,” IEEE Transactions On Electron Devices, vol. 59, no. 3, pp. 631–638, 2012.
    [10] Q. Chen, S. Balasubramanian, C. Thuruthiyil, M. Gupta, V. Wason, N. Subba, J.-S. Goo, P. Chiney, S. Krishnan, and A. B. Icel, “Critical Current (ICRIT) Based SPICE Model Extraction for SRAM Cell,” 2008 9th International Conference On Solid-State and Integrated-Circuit Technology, 2008.
    [11] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, “Growth and Transport Properties of Complementary Germanium Nanowire Field-Effect Transistors,” Applied Physics Letters, vol. 84, no. 21, pp. 4176–4178, 2004.
    [12] G. Gu, M. Burghard, G. T. Kim, G. S. Düsberg, P. W. Chiu, V. Krstic, S. Roth, and W. Q. Han, “Growth and Electrical Transport of Germanium Nanowires,” Journal of Applied Physics, vol. 90, no. 11, pp. 5747–5751, 2001.
    [13] K. Tomioka, M. Yoshimura, and T. Fukui, “A III–V Nanowire Channel on Silicon for High-Performance Vertical Transistors,” Nature, vol. 488, no. 7410, pp. 189–192, 2012.
    [14] K. Tomioka, M. Yoshimura, and T. Fukui, “Steep-Slope Tunnel Field-Effect Transistors Using III-V Nanowire/Si Heterojunction,” 2012 Symposium on VLSI Technology (VLSIT), 2012.
    [15] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.- S. P. Wong, and A. Javey, “Mos2 Transistors With 1-Nanometer Gate Lengths,” Science, vol. 354, no. 6308, pp. 99–102, Jun. 2016.
    [16] F. Schwierz, “Graphene Transistors,” Nature Nanotechnology, vol. 5, no. 7, pp. 487–496, 2010.
    [17] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High Performance Multilayer Mos2 Transistors With Scandium Contacts,” Nano Letters, vol. 13, no. 1, pp. 100–105, 2012.
    [18] M. Lemme, “Current Status of Graphene Transistors,” Solid State Phenomena, vol. 156-158, pp. 499–509, 2010.
    [19] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling Theory for Double-Gate SOI Mosfets,” IEEE Transactions On Electron Devices, vol. 40, no. 12, pp. 2326–2329, 1993.
    [20] Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Ultra-Thin Body SOI MOSFET for Deep-Sub-Tenth Micron Era,” IEEE Electron Device Letters, vol. 21, no. 5, pp. 254-255, 2000.
    [21] K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata, and S. Takagi, “Experimental Study On Carrier Transport Mechanism In Ultrathin-Body SOI Nand P-Mosfets With SOI Thickness Less Than 5 nm,” Digest. International Electron Devices Meeting, pp. 47–50, 2002.
    [22] J.-T. Park, J.-P. Colinge, and C. Diaz, “Pi-Gate SOI MOSFET,” IEEE Electron Device Letters, vol. 22, no. 8, pp. 405–406, 2001.
    [23] F.-L. Yang, H.-Y. Chen, F.-C. Chen, C.-C. Huang, C.-Y. Chang, H.-K. Chiu, C.-C. Lee, C.-C. Chen, H.-T. Huang, C.-J. Chen, H.-J. Tao, Y.-C. Yeo, M.-S. Liang, and C. Hu, “25 nm CMOS Omega FETs,” Digest. International Electron Devices Meeting, pp. 255-258, 2002.
    [24] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser, “Finfet Scaling To 10 nm Gate Length,” Digest. International Electron Devices Meeting, pp. 251–254, 2002.
    [25] J. Kedzierski, M. Ieong, E. Nowak, T. Kanarsky, Y. Zhang, R. Roy, D. Boyd, D. Fried, and H.S. Wong, “Extension and Source/Drain Design for High-Performance FinFET Devices,” IEEE Transactions On Electron Devices, vol. 50, no. 4, pp. 952–958, 2003.
    [26] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Letters, vol. 3, no. 2, pp. 149–152, 2003.
    [27] N. Singh, A. Agarwal, L. Bera, T. Liow, R. Yang, S. Rustagi, C. Tung, R. Kumar, G. Lo, N. Balasubramanian, and D.-L. Kwong, “High-Performance Fully Depleted Silicon Nanowire (Diameter ≤ 5 nm) Gate-All-Around CMOS Devices,” IEEE Electron Device Letters, vol. 27, no. 5, pp. 383–386, 2006.
    [28] H. M. Fahad and M. M. Hussain, “Are Nanotube Architectures More Advantageous Than Nanowire Architectures for Field Effect Transistors?,” Scientific Reports, vol. 2, no. 1, 2012.
    [29] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With Record High Drive Currents and ≪ 60 mV/dec Subthreshold Slope,” Digest. International Electron Devices Meeting, 2008.
    [30] S. Salahuddin and S. Datta, “Use of Negative Capacitance To Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Letters, vol. 8, no. 2, pp. 405–410, 2008.
    [31] International Technology Roadmap for Semiconductor 2.0, 2015 [Online]. Available: http://www.itrs2.net/.
    [32] S. Takagi, “Advanced Device and Materials for Future CMOS-Based IC Technologies,” International Electron Devices and Material Symposium Short Course, 2017.
    [33] C. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, “A comparative study of advanced MOSFET concepts,” IEEE Transactions on Electron Devices, vol. 43, no. 10, pp. 1742–1753, 1996.
    [34] Handel Jones, “FD SOI Benefits Rise At 14 nm, ” EE Times, June 13, 2016.
    [35] A. Chandrakasan, “Low Power Circuit and System Design,” International Electron Device Meeting Short Course, 2000.
    [36] . P. Bikki and P. Karuppanan, “SRAM Cell Leakage Control Techniques for Ultra Low Power Application: A Survey,” Circuits and Systems, vol. 08, no. 02, pp. 23–52, 2017.
    [37] J. Xue, T. Li, Y. Deng, and Z. Yu, “Full-Chip Leakage Analysis for 65 nm CMOS Technology and Beyond,” Integration, the VLSI Journal, vol. 43, no. 4, pp. 353–364, 2010.
    [38] Synopsys Sentaurus TCAD manual Ver.J-2016.03, Synopsys, Inc., Mountain View, CA, USA.
    [39] A. Ortiz-Conde, F. G. Sánchez, J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, vol. 42, pp. 583–596, 2002.
    [40] J.P. Colinge, A. Kranti, R. Yan, C.W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, and P. Razavi, “Junctionless Nanowire Transistor (JNT): Properties and Design Guidelines,” Solid-State Electronics, vol. 65-66, pp. 33–37, 2011.
    [41] C.W. Lee, I. Ferain, A. Afzalian, R. Yan, N. Dehdashti Akhavan, P. Razavi, and J.P. Colinge, “Performance Estimation of Junctionless Multigate Transistors,” Solid-State Electronics, vol. 54, no. 2, pp. 97–103, 2010.
    [42] J.P. Colinge, “Conduction Mechanisms in Thin-Film Accumulation-Mode SOI p-Channel MOSFETs,” IEEE Transactions on Electron Devices, vol. 37, no. 3, pp. 718–723, 1990.
    [43] J.P. Colinge, C.W. Lee, N. Dehdashti Akhavan, R.Yan, I. Ferain, P. Razavi, and R. Yu, Semiconductor-On-Insulator Materials for Nanoelectronics Applications, Engineering Materials, Springer, Berlin Heidelberg, 2011.
    [44] Y. Yamamoto, “Decananometer Surrounding Gate Transistor (SGT) Scalability by Using an Intrinsically-Doped Body and Gate Work Function Engineering.” IEICE Transactions on Electronics, no. 4, pp. 560–567, 2006.
    [45] W. Cheng, A. Teramoto, M. Hirayama, S. Sugawa, and T. Ohmi, “Impact of Improved High-Performance Si(110)-Oriented Metal–Oxide–Semiconductor Field-Effect Transistors Using Accumulation-Mode Fully Depleted Silicon-on-Insulator Devices,” Japanese Journal of Applied Physics, vol. 45, no. 4B, pp. 3110–3116, 2006.
    [46] R. Kuroda, A. Teramoto, S. Sugawa, and T. Ohmi, “Performance Comparison of Ultrathin Fully Depleted Silicon-on-Insulator Inversion-, Intrinsic-, and Accumulation-Mode Metal–Oxide–Semiconductor Field-Effect Transistors,” Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 2668–2671, 2008.
    [47] J. P. Colinge, C. W. Lee, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti and R. Yu, “Junctionless Transistors: Physics and Properties,” Springer, pp. 187-200, 2001.
    [48] S. Gundapaneni, M. Bajaj, R. K. Pandey, K. V. Murali, S. Ganguly, and A. Kottantharayil, “Effect of Band-to-Band Tunneling on Junctionless Transistors,” IEEE Transactions on Electron Devices, vol. 59, no. 4, pp. 1023–1029, 2012.
    [49] C. M. Tan and X. Chen, “Random Dopant Fluctuation in Gate-All-Around Nanowire FET,” 2014 IEEE International Nanoelectronics Conference (INEC), 2014.
    [50] S. Masum Nawaz, S. Dutta, A. Chattopadhyay, and A. Mallik, “Comparison of Random Dopant and Gate-Metal Workfunction Variability Between Junctionless and Conventional FinFETs,” IEEE Electron Device Letters, vol. 35, no. 6, pp. 663–665, 2014.
    [51] M. Schmidt, M. Lemme, H. Gottlob, F. Driussi, L. Selmi, and H. Kurz, “Mobility Extraction in SOI MOSFETs with Sub 1nm Body Thickness,” Solid-State Electronics, vol. 53, no. 12, pp. 1246–1251, 2009.
    [52] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the Universality of Inversion Layer Mobility in Si MOSFETs: Part I-effects of Substrate Impurity Concentration,” IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357–2362, 1994.
    [53] F. Gámiz, C. Sampedro, L. Donetti, and A. Godoy, “Monte-Carlo Simulation of Ultra-thin Film Silicon-on-insulator MOSFETs,” International Journal of High Speed Electronics and Systems, vol. 22, no. 01, p. 1350001, 2013.
    [54] S. Cristoloveanu and S.S. Li, Electrical Characterization of Silicon-on-insulator Materials and Devices, Kluwer, Boston, 1995.
    [55] F. Gámiz, J. B. Roldán, and J. A. López-Villanueva, “Phonon-limited electron mobility in ultrathin silicon-on-insulator inversion layers,” Journal of Applied Physics, vol. 83, no. 9, pp. 4802–4806, 1998.
    [56] M. J. Kumar and M. Siva, “The Ground Plane in Buried Oxide for Controlling Short-Channel Effects in Nanoscale SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 55, no. 6, pp. 1554–1557, 2008.
    [57] T. Numata and S.-I. Takagi, “Device Design for Subthreshold Slope and Threshold Voltage Control in Sub-100-nm Fully Depleted SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 51, no. 12, pp. 2161–2167, 2004.
    [58] V. Trivedi, G. Fossum, and Murshed M. Chowdhury, “Nanoscale FinFETs with Gate-Source/Drain Underlap,” IEEE Transactions on Electron Devices, vol. 52, no. 1, pp. 56–62, 2005.
    [59] A. Kranti and G. A. Armstrong, “Engineering Source/Drain Extension Regions in Nanoscale Double Gate (DG) SOI MOSFETs: Analytical model and design considerations,” Solid-State Electronics, vol. 50, no. 3, pp. 437–447, 2006.
    [60] M. Kwong, R. Kasnavi, P. Griffin, J. Plummer, and R. Dutton, “Impact of Lateral Source/Drain Abruptness on Device Performance,” IEEE Transactions on Electron Devices, vol. 49, no. 11, pp. 1882–1890, 2002.
    [61] A. Asenov and S. Saini, “Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1-m MOSFETs With Epitaxial and δ-Doped Channels,” IEEE Transactions on Electron Devices, vol. 46, no. 8, pp. 1718–1724, 1999.
    [62] T. Yu, R. Wang, W. Ding, and R. Huang, “Impacts of Diameter-Dependent Annealing on S/D Extension Random Dopant Fluctuations In Silicon Nanowire MOSFETs,” IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010.
    [63] C. Shin, X. Sun, and T.-J. K. Liu, “Study of Random-Dopant-Fluctuation (RDF) Effects for the Trigate Bulk MOSFET,” IEEE Transactions on Electron Devices, vol. 56, no. 7, pp. 1538–1542, 2009.
    [64] N. D. Akhavan, G. A. Umana-Membreno, R. Gu, J. Antoszewski, and L. Faraone, “Random Dopant Fluctuations And Statistical Variability in n-Channel Junctionless FETs,” Nanotechnology, vol. 29, no. 2, p. 025203, Dec. 2017.
    [65] G. Leung and C. O. Chui, “Interactions Between Line Edge Roughness and Random Dopant Fluctuation in Nonplanar Field-Effect Transistor Variability,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3277–3284, 2013.
    [66] G. Leung and C. O. Chui, “Variability of Inversion-Mode and Junctionless FinFETs due to Line Edge Roughness,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1489–1491, 2011.
    [67] J. Kim, J.-W. Han, and M. Meyyappan, “Reduction of Variability in Junctionless and Inversion-Mode FinFETs by Stringer Gate Structure,” IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 470–475, 2018.
    [68] N. Ashraf and D. Vasileska, “Static Analysis of Random Telegraph Noise in a 45-nm Channel Length Conventional MOSFET Device: Threshold Voltage and ON-Current Fluctuations,” IEEE Transactions on Nanotechnology, vol. 10, no. 6, pp. 1394–1400, 2011.
    [69] N. Ashraf, D. Vasileska, G. Wirth, and P. Srinivasan, “Accurate Model for the Threshold Voltage Fluctuation Estimation in 45-nm Channel Length MOSFET Devices in the Presence of Random Traps and Random Dopants,” IEEE Electron Device Letters, vol. 32, no. 8, pp. 1044–1046, 2011.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE