| 研究生: |
張家瑋 Chang, Chia-Wei |
|---|---|
| 論文名稱: |
200公斤級推力過氧化氫預分解混合火箭之研發 Development of a 200kgf Pre-decomposition Hydrogen Peroxide Hybrid Rocket |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 混合火箭 、過氧化氫 、預分解 、觸媒床 、噴注器 |
| 外文關鍵詞: | hybrid rocket, hydrogen peroxide, pre-decomposition, catalyst bed, injector |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過氧化氫預分解混合火箭具備高空點火、重複點火、推力調控功能,且安全性高,被視為發展上層火箭的潛力技術。本實驗室過去成功建立30kgf 過氧化氫預分解混合火箭及相關參數資料,然而在測試過程中發現旋流噴注器因燃燒室熱回朔而燒蝕的現象,在後續研究中,利用中心液態過氧化氫噴注吸收燃燒室多餘熱能來保護旋流噴注器,並順利將推力提升至300kgf,但於後續點火測試發生爆炸。
透過影格、實驗證據、文獻資料分析,判斷爆炸起因於過氧化氫分解不佳,而旋流噴注器燒蝕則因其下游中心回流區高溫所致。故本研究改善噴注器流道設計賦予其初步限制開閥流量並均勻散佈過氧化氫之功能,在良好的噴注器設計下適度減少觸媒用量以減低觸媒床壓降,同時增加擋板強度來穩固觸媒床整體結構,預期透過上述改良使發動機在點火建壓前的暫態階段不會落入大量過氧化氫分解不完全的情況;熱回朔問題則改良旋流噴注器構型使過氧化氫分解氣流通過其中央,以此破壞或將中心回流區往更下游移動,避免與旋流噴注器直接接觸,防止燒蝕。
透過實驗證實本研究開發之過氧化氫噴注器流量限制效果明顯,預分解段可將過氧化氫快速分解至氣相反應期間並順利點燃發動機,觸媒床反應趨於穩定,且反應時間接近發動機點火延遲時間,實驗過後擋板亦無變形,觸媒床整體結構穩固,與300kgf系統比較,本系統之觸媒床壽命提升至少三倍,仍可進行後續測試;本研究亦於5秒的發動機點火測試證實將中心回流區往下游移動的方法可有效抑制熱回朔,以更簡易的機構設計保護旋流噴注器。
本研究奠基於實驗室過去開發之經驗、數據、觸媒及發動機基礎構型,透過解決爆炸及燒蝕問題成功開發200公斤級推力過氧化氫預分解混合火箭。
One of advantages of pre-decomposition hydrogen peroxide (HP) hybrid rocket is the possibility of initiating its catalytic decomposition without using an additional igniting device. This simplifies the design of the motor and makes it has great potential to be upper stage rockets. The decomposition rate of HP is one of the most important parameters in the development of pre-decomposition hydrogen peroxide hybrid rocket. The injector developed in this study can constrain the overshoot in transient of the HP mass flow rate which is about twice of the steady flow rate and distribute it evenly. With the proper injector design, the catalyst filling amount that leads to pressure drop in the catalyst pack is reduced and the catalyst bed meets the requirement of complete decomposition of concentrated HP right after the valve opening. By experimental results, it was found that the time of reaching the steady-state is about 0.44s and is very close to the 50P fuel grain engine ignition delay time. Compared with the 300kgf system invented in our laboratory in the past, the operation life of the catalyst bed in this study is increased by at least three times and is still able to work normally. This study also verifies that the effect of HP decomposition gases flow can push the central recirculation zone to downstream of the swirler which can prevent the heat from the combustion chamber that causes thermal ablation. Finally, a motor of 200kgf Pre-decomposition HP Hybrid Rocket is successfully developed and demonstrated.
[1] Sutton, G.P., and Biblarz, O. (2000), Rocket Propulsion Elements (7th ed.), New York: John Wiley & Sons, Inc, pp.589.
[2] Altman, D., and Holzman, A. (2007), “Overview and History of Hybrid Rocket Propulsion,” Progress in Astronautics and Aeronautics, Vol. 218, p.3.
[3] Chiaverini, M., and Kuo, K.K. (2007), Fundamentals of Hybrid Rocket Combustion and Propulsion, Reston, Virginia: AIAA, p.44.
[4] 李俊明、施耿維、劉軒誠、邱慶龍、賈澤民、賴維祥、邱輝煌、李聰盛(1999),「混合火箭之初步設計及研究」,中國航空太空學會學刊,第三十一卷第三期,頁235-240。
[5] Pirault-Roy, L., Kappenstein, C., Guérin, M., Eloirdi, R., and Pillet, N. (2002), “Hydrogen Peroxide Decomposition on various supported catalysts effect of stabilizers,” Journal of Propulsion and Power, Vol. 18, pp.1235-1241.
[6] Pugibet, M. and Moutet, H.(1970), “On The Use of Hydrogen Peroxide as Oxidizer in Hybrid Systems,” Washington, D.C.: NASA.
[7] Shark, S.C., Pourpoint, T.L., Son, S.F., and Heister, S.D.(2013), “Performance of Dicyclopentadiene/H2O2-Based Hybrid Rocket Motors with Metal Hydride Additives,” Journal of Propulsion and Power, Vol. 29, pp.1122-1129.
[8] Castaneda, D. A., and Natan, B. (2018), “Experimental investigation of the hydrogen peroxide-solid hydrocarbon hypergolic ignition,” Acta Astronautica, Vol. 158, pp.286-295.
[9] Wernimont, E.J., Scott, E.M. and Mark, C.V.(1998), “Hybrid Motor System with A Consumable Catalytic Bed A Composition of The Catalytic Bed and A Method Of Using,” U.S. Patent, No. 5,727,368.
[10] Moore, G.E. (1956), “A Solid-Liquid Rocket Propellant System,” Journal of Jet Propulsion, Vol. 26, pp.965-968.
[11] https://www.gspacetech.com/post/2018-gilmour-space-80kn-testfire
[12] Faenza, M.G. (2019), “The Nammo Nucleus Launch: Norwegian Hybrid Sounding Rocket over 100km”, AIAA Propulsion and Energy 2019 Forum, Indianapolis, August 19-22, 2019.
[13] Chiaverini, M., and Kuo, K.K. (2007), Fundamentals of Hybrid Rocket Combustion and Propulsion, AIAA, p.46.
[14] Karabeyoglu, M.A., Cantwell, B.J., and Altman, D. (2001), ‘‘Development and testing of paraffin-based hybrid rocket fuels’’, 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, U.S.A., July 8-11, 2001.
[15] 卓世明(2006),「石蠟燃料混合火箭之性能測試」,國立成功大學航空太空工程學系碩士論文。
[16] Yuasa, S., Shimada, O., Imamura, T., Tamura, T., and Yamoto, K. (1999), “A Technique for Improving The Performance of Hybrid Rocket Engines”, 35th Joint Propulsion Conference and Exhibit, AIAA, Los Angeles, CA, U.S.A., June 20-24, 1999.
[17] 莫嘉傑(2016),「預分解過氧化氫與HTPB/石蠟混合火箭之研發及測試」,國立成功大學航空太空工程學系碩士論文。
[18] 趙怡欽、許紘瑋、許耀中,「發展具入軌暨姿控功能之過氧化氫型態混合火箭技術」,國防科技學術合作計畫成果論文集,2017。
[19] 陳弈良(2018),「300kgf 旁通預分解過氧化氫混合火箭之研究」,國立成功大學航空太空工程學系碩士論文。
[20] Cain, E. F. C. (1967), Hydrogen Peroxide Handbook, Canoga Park, California: Rocketdyne Inc, pp.416.
[21] Beér, J. M., and Chigier. N. A. (1972), Combustion Aerodynamics, London: Applied Science Publishers Ltd.
[22] Sutton, G.P., and Biblarz, O. (2000), Rocket Propulsion Elements (7th ed.), New York: JOHN WILEY & SONS INC, pp.62-68.
[23] Popp, M., Hulka, J., Yang, V., and Habiballah, M. (2004), Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design, Reston, Virginia: AIAA, pp.45-53.
[24] http://www.thermopedia.com/content/577
[25] An, S., and Kwon, S. (2009), “Scaling and Evaluation of Pt/Al2O3 Catalytic Reactor for Hydrogen Peroxide Monopropellant Thruster,” Journal of Propulsion and Power, Vol. 25, pp.1041-1045.
[26] Grant, Jr. A. F. (1954), Basic Factors Involved in The Design and Operation of Catalytic Monopropellant - Hydrazine Reaction Chambers, California: California Institute of Technology.
[27] https://www.nickelinstitute.org/media/1699/high_temperaturecharacteristicsofstainlesssteel_9004_.pdf
[28] 陳建安(2003),「過氧化氫觸媒雙推進劑熱機引擎之研發」,國立成功大學航空太空工程學系碩士論文。
[29] Sinha, Y. K., Sridhar, B. T. N., and Santhosh, M. (2014), “Thermal decomposition study of HTPB solid fuel in the presence of activated charcoal and paraffin,” Journal of Thermal Analysis and Calorimetry, Vol. 119, pp.557-565.
[30] Sakote, R., Yadav, N., Karmakar, S., Joshi, P. C., and Chatterjee, A. K. (2014), “Regression Rate Studies of Paraffin Wax-HTPB Hybrid Fuels Using Swirl Injectors,” Propellants, Explosives, Pyrotechnics, Vol.39, pp.859-865.
校內:2025-08-10公開