簡易檢索 / 詳目顯示

研究生: 呂俊霆
Lu, Jiun-Ting
論文名稱: 發展以簡化希爾伯轉換為基礎之即時處理腦波訊號方法及其應用
Real-Time EEG Signal Process Method and Application Based on Simplified Hilbert Huang Transform
指導教授: 朱銘祥
Ju, Ming-Shaung
共同指導教授: 林宙晴
Lin, Chou-Ching K.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 事件相關去同步化人腦電腦介面希爾伯黃轉換中風復健方法
外文關鍵詞: Event-related desynchronization(ERD), brain computer interface, Hilbert Huang transform, stroke, rehabilitation methods
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 事件相關去同步化(ERD)為腦波於時頻上隨著動作而發生能量減弱的現象,傳統上大多使用短時傅立葉轉換及小波轉換擷取此特徵,再結合人腦電腦介面(BCI)以進行應用。希爾伯黃轉換為近年來新興的訊號處理方法,具有絕佳的時頻解析度,非常適合用於分析非穩態訊號於時頻上的變化,例如腦波的ERD及其它的生理訊號。
    本研究發展一套以簡化希爾伯黃轉換為基礎的即時處理腦波訊號方法,並將其應用於辨識動作相關腦波變化。接著將此方法與前人研究結合,設計使用腦波控制游標的BCI系統。兩位中風病患經由想像動作控制游標移動至命令位置,並藉此訓練控制腦波變化能力。經訓練後,第一位病患最佳可達90%的控制成功率,第二位最佳則可達80%的成功率,且兩位受測者腦波變化情形皆與預期相符。至此完成訓練控制BCI部分,接著吾人結合BCI系統與前人研究之復健機器人,設計一套復健方法:當病人可穩定地控制腦波後,使其藉由BCI控制機器人帶動動作,以進行復健療程。經腦波控制訓練後,病人可順利地藉此方法進行復健,而此結果可證明BCI結合復健機器人的可行性。

    Event-related desynchronization(ERD) is a power decrease accompany with movement-related electroencephalogram(EEG) in time-frequency domain. Short time Fourier transform and wavelet transform were often used to analyze this kind of power change, and they could be utilized as brain computer interface (BCI). Hilbert Huang transform is a new method for analyzing non-stationary signals, and it can offer very precise resolution in time- frequency domain, so it is very suitable for analyzing ERD of EEG or other physiological signals. The goal of this thesis was to develop a signal processing method based on simplified HHT for real-time ERD identification.

    The method was then used to construct a cursor control BCI. Two stroked patients were trained to control the cursor to move to assigned target by imaginary hand motion and to enhance their ability of controlling EEG change or ERD. After training, the first patient reached success rate of 90% and the second reached 80% and both of their EEG showed significant ERD. By integrating a lower-limb robot and the BCI system a new rehabilitation method was developed. After training, the second patient could use the BCI to move his lower limbs through the assistance of the robot. The results showed the feasibility of integrating the EEG-based BCI and rehabilitation robots.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 x 符號表 xi 第一章 緒論 1 1-1 研究背景 1 1-2 大腦皮質功能介紹 2 1-3 大腦腦電波圖介紹 4 1-4 人腦電腦介面 6 1-5 文獻回顧 7 1-6 研究動機與目的 9 第二章 研究方法與實驗 10 2-1 希爾伯黃轉換 10 2-1.1 希爾伯黃轉換介紹 10 2-1.2動作相關腦波之希爾伯黃轉換初步分析 15 2-2即時擷取腦波特徵方法 16 2-2.1 簡化希爾伯黃轉換 16 2-2.2動作相關腦波特徵 18 2-2.3 即時特徵擷取系統 21 2-2.4短時傅立葉轉換特徵擷取 23 2-3腦波控制游標實驗 24 2-3.1 實驗設備 24 2-3.2 實驗原理 25 2-3.3 實驗步驟 28 2-4 腦波控制復健機器人實驗 30 2-4.1 實驗設備 30 2-4.2 復健機器人運動路徑規劃及控制 31 2-4.3 腦波訊號處理 33 2-4.4 實驗步驟 35 第三章 結果 37 3-1 動作相關腦波初步分析 37 3-2 即時擷取腦波變化特徵 40 3-2.1 簡化前後運算時間比較 40 3-2.2 邊緣擬合誤差處理 40 3-2.3 模擬腦波變化代入即時特徵擷取系統 42 7-2.4 動作相關腦波特徵擷取結果 43 3-2.5 最佳特徵判定閥值及成功率 44 3-3 控制游標實驗 47 3-3.1 判定想像動作閥值 48 3-3.2 常人控制游標實驗 49 3-3.3 偏癱患者控制游標實驗 54 3-4 控制復健機器人實驗 66 3-4.1 復健機器人控制 66 3-4.2 腦波訊號前處理結果 66 3-4.3 控制復健機器人實驗 69 第四章 討論 71 4-1 動作相關腦波分析 71 4-2 即時辨識腦波方法 72 4-2.1 簡化希爾伯黃轉換 72 4-2.2 即時特徵擷取系統 73 4-2.3 最佳判斷閥值 74 4-3 游標控制實驗 76 4-3.1 常人控制游標實驗 76 4-3.2 偏癱患者控制游標實驗 77 4-4復健機器人結合BCI系統實驗 79 第五章 結論與建議 80 參考文獻 82

    [1] C. Starr, C.A. Evers and L. Starr, “Biology: concepts and application”, Thomsom Brooks/Cole, Australia, pp. 498-507, 2006.
    [2] G. Pfurtscheller, “Graphical display and statistical evaluation of event-related desynchronization (ERD),” Electroencephalography and Clinical Neurophysiology, vol. 43, pp. 757-760, 1977.
    [3] G. Pfurtscheller and F.H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical Neurophysiology, vol. 110, pp. 1842-1857, 1999.
    [4] G. Pfurtscheller, C. Neuper, D. Flotzinger and M. Pregenzer, “EEG-based discrimination between imagination of right and left hand movement,” Electroencephalography and Clinical Neurophysiology, vol. 103, pp. 642-651, 1997.
    [5] J.R. Wolpaw, D.J. McFarland, G.W. Neat and C.A. Forneris, “An EEG-based brain-computer interface for cursor control,” Electroencephalography and Clinical Neurophysiology, vol. 78, pp. 252-259, 1991.
    [6] J. Kalcher, D. Flotzinger, and G. Phrtscheller, “Graz Brain-Computer Interface: an EEG-Based Cursor Control System,” Engineering in Medicine and Biology Society, 1993. Proceedings of the 15th Annual International Conference of the IEEE, pp. 1264-1265, 1993.
    [7] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shin, Q. Zheng, N.-C. Yen, C.-C. Tung and H.H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. Royal Soc. London, series A, vol. 454, pp. 903-995, 1998.
    [8] J.R. Wolpaw and D.J. McFarland, “Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 17849-17854, 2004.
    [9] G. Pfurtscheller and C. Neuper, “Motor Imagery and Direct Brain-computer Communication,” Proceedings of the IEEE, vol. 89, no. 7, pp. 1123-1134, 2001.
    [10] K. I. Panoulas, L.J. Hadjileontiadis and S.M. Panas, “Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications,” Conf Proc IEEE Eng Med Biol Soc, pp. 3832-3835, 2008.
    [11] L. Wang, G. Xu, J. Wang, S. Yang and W. Yan, “Application of Hilbert-Huang transform for the study of motor imagery tasks,” Conf Proc IEEE Eng Med Biol Soc, pp 3848-3851, 2008.
    [12] P.-L. Lee, L.-Z. Shang, Y.-T. Wu, C.-H. Shu, J.-C. Hsien, Y.-Y. Lin, C.-H. Wu, Y.-L. Liu, C.-Y. Yang, C.-W. Sun and K.-K. Shyu, “Single-Trial Analysis of Cortical Oscillatory Activities During Voluntary Movements Using Empirical Mode Decomposition (EMD)-Based Spatiotemporal Approach,” Annals of Biomedical Engineering, vol. 37, no. 8, pp. 1683-1700, 2009.
    [13] 王政道, “μ波為控制源之研究,” 國立成功大學機械工程學系碩士論文, 1998.
    [14] 黃志旭, “拇指被動運動對μ波的影響,” 國立成功大學機械工程學系碩士論文, 2000.
    [15] 陳志瑋, “研究以小波神經網路做μ波即時鑑別,” 國立成功大學機械工程學系碩士論文, 2001.
    [16] 陳志瑋, “以mu波為基礎之大腦電腦介面之實現與強化,” 國立成功大學機械工程學系博士論文, 2009.
    [17] 方振隆, “以腦波控制之主動式義手,” 國立成功大學機械工程學系碩士論文, 2004.
    [18] 李昆祐, “腦波觸發控制機器人於中風病人膝臗關節復建之研究,” 國立成功大學機械工程學系碩士論文, 2009.
    [19] 馬仕安, “膝和髖關節神經復健用機器人之研究,” 國立成功大學機械工程學系碩士論文, 2007.
    [20] Z. Wu and N.E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, pp. 1597-1611, 2004.
    [21] P. Flandrin, G. Rilling and P. Goncelves “Empirical Mode Decomposition as a Filter Bank,” IEEE Signal Process Lettet, vol. 11, no. 2, pp.112-114, 2004.
    [22] 徐政煒, “應用隨機共振法強化事件相關去同步現象,” 國立成功大學機械工程學系碩士論文, 2004.
    [23] Z. Wu and N.E. Huang, “Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method,” Advances in Adaptive Data Analysis, vol. 1, no. 1, pp. 1-41, 2009.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE