| 研究生: |
施仲韋 Shih, Chung-Wei |
|---|---|
| 論文名稱: |
井測法應用於沉積環境重建之研究-以台南科學工業園區為例 Sedimentary Environment Reconstruction by Well-logging Application – A Case Study of Tainan Science Industry Park, Taiwan |
| 指導教授: |
吳泓昱
Wu, Hung-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電測相 、自然伽瑪 、地球物理 、連井對比 、井測曲線形狀 |
| 外文關鍵詞: | Electrical log facies, Natural gamma, Geophysics, Cross-well comparison, log-motif |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
井測(Well logging)是一種地球物理探勘的方式,主要目的在於探知地層下人眼無法觀測之區域,透過將探針下放置井孔之中,並在探針的向上提拉的同時,量測並記錄隨著地層深度變化,不同地層之各式物理特性。井測廣泛地應用於石油工業中,因其提供了辨識油氣儲集層的關鍵地質特性,而成為當中不可或缺的一環,但自1956年首次將井測法引入作為沉積學的工具後,因井測曲線的形狀與沉積物的粒徑序列具有高相似性,井測學乃被長期應用在沉積相的解釋之中。
本研究與南科考古鑽探計畫合作,於臺南南科園區內之十九口鑽探井中進行井測作業,取得近地表至100公尺深之地球物理特性資料,項目包含:電阻井測、自然伽瑪井測、聲波井測及孔內超聲波造影。經比對之後,我們主要以自然伽瑪井測作為分析工具,依照其數據曲線所呈現出的趨勢與形狀,與電阻率、聲波及井下超聲波井測比較,分析與統整在研究區域內常見的電測相,並以岩芯資訊做為輔助,與井測資料進行交互對照,以對特定電測相所可能代表的沉積環境進行推測與解釋,探討不同的環境在井測資料上的表現。
研究結果顯示,自然伽瑪、電阻率及聲波井測三者共享的高振幅特性,可用於界定地層中岩性轉變劇烈的層位,提供井測與地表下相對的控制點,而透過自然伽瑪劃分形狀基準的制定,所界定出象徵不同沉積環境的各種曲線形狀,在由各井資料對比後所建立之地層剖面中也有著一致的相關性,如在井中識別出的障蔽砂洲序列以及河口相環境的出現,能夠提供該時期古海岸線位置的資訊,給予我們在台南科學園區區域中的沉積環境變遷有更佳的解釋。
本研究藉由自然伽瑪曲線為分析工具,建立了一套劃分數據曲線之趨勢及形狀的標準,提供我們在實時井測作業中,對地表下的岩層岩性以及沉積環境分析上快速且直觀之方法,可與其他分析工具參考對照,如岩芯判識等,並對地表下的環境變遷有更深刻的理解。
Well logging is a geophysical exploration method crucial in the petroleum industry for identifying oil and gas reservoirs. In collaboration with the Tainan Science Industry Park AO region drilling project, this study conducted logging in nineteen boreholes in Taiwan. Data collected from near-surface to 100 meters depth included electrical resistivity, natural gamma-ray, sonic logging, and borehole acoustic imaging. Natural gamma-ray logging exhibited a strong correlation with lithology. The study focused on its analysis, integrating common electrical logging phases with resistivity, sonic, and downhole ultrasonic data. Results revealed high-amplitude characteristics in natural gamma-ray, resistivity, and sonic logs, aiding in delineating lithological changes. Shape-based criteria for interpreting natural gamma-ray curves identified various sedimentary environments, including barrier sand sequences and fluvial environments, providing insights into the paleo-coastline location in the Tainan Science Industry Park. The study established standards for trend and shape division, offering a rapid method for real-time well logging operations, enhancing understanding of subsurface lithology and environmental changes.
1. AL-Baldawi, B. A. (2022). Hydrocarbon Reservoir Characterization Using Well Logs of Nahr Umr Formation in Kifl Oil field, Central Iraq. Iraqi Journal of Science, 3544-3554.
2. Arz, J., Arenillas, I., Soria, A., Alegret, L., Grajales-Nishimura, J., Liesa, C., . . . Rosales, M. (2001). Micropaleontology and sedimentology across the Cretaceous/Tertiary boundary at La Ceiba (Mexico): impact-generated sediment gravity flows. Journal of South American Earth Sciences, 14(5), 505-519.
3. Beaubouef, R. (2004). Deep-water leveed-channel complexes of the Cerro Toro Formation, Upper Cretaceous, southern Chile. AAPG bulletin, 88(11), 1471-1500.
4. Bigelow, E. L. (1992). Introduction to wireline log analysis: Western Atlas International.
5. Bourquin, S., Rigollet, C., & Bourges, P. (1998). High-resolution sequence stratigraphy of an alluvial fan–fan delta environment: stratigraphic and geodynamic implications–an example from the Keuper Chaunoy Sandstones, Paris Basin. Sedimentary Geology, 121(3-4), 207-237.
6. Bruhn, C. H., Gomes, J. A. T., Del Lucchese Jr, C., & Johann, P. R. (2003). Campos Basin: reservoir characterization and management-historical overview and future challenges. Paper presented at the Offshore Technology Conference.
7. Cant, D. (1992). Part I subsurface facies analysis. Facies Models-response to sea level change-, 27-46.
8. Chow, J. J., Li, M.-C., & Fuh, S.-C. (2005). Geophysical Well Log Study on the Paleoenvironment of the Hydrocarbon Producing Zones in the Erchungchi Formation, Hsinyin, SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 16(3). doi: 10.3319/tao.2005.16.3.531(t)
9. Coleman, J. M., & Prior, D. B. (1981). Deltaic influence on shelf-edge instability processes. AAPG bulletin, 65(5), 912-912.
10. Coleman, J. M., & Prior, D. B. (1982). Deltaic environments of deposition.
11. Conybeare, C. E. B. (1976). Geomorphology of Oil and Gas Fields in Sandstone Bodies: Elsevier Scientific Publishing Company.
12. Dar, Q. U. Z. Z., Renhai, P., Ghazi, S., Ahmed, S., Ali, R. I., & Mehmood, M. (2023). Depositional facies and reservoir characteristics of the Early Cretaceous Lower Goru Formation, Lower Indus Basin Pakistan: Integration of petrographic and gamma-ray log analysis. Petroleum, 9(3), 331-341. doi: 10.1016/j.petlm.2021.09.003
13. Das, B. K., & Kaur, P. (2001). Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Environmental Geology, 40, 908-917.
14. Eshimokhai, S., & Akhirevbulu, O. (2012). Reservoir characterization using seismic and well logs data (a case study of Niger Delta). Ethiopian Journal of Environmental Studies and Management, 5(4), 597-603.
15. Galloway, W. E. (1968). Depositional systems of the lower Wilcox Group, north-central Gulf Coast basin.
16. Galloway, W. E., & Hobday, D. K. (2012). Terrigenous clastic depositional systems: applications to petroleum, coal, and uranium exploration: Springer Science & Business Media.
17. Heldreich, G., Redfern, J., Legler, B., Gerdes, K., & Williams, B. (2017). Challenges in characterizing subsurface paralic reservoir geometries: a detailed case study of the Mungaroo Formation, North West Shelf, Australia. Geological Society, London, Special Publications, 444(1), 59-108.
18. Johnson, H. M. (1962). A history of well logging. Geophysics, 27(4), 507-527.
19. Kessler, L., & Sachs, S. D. (1995). Depositional setting and sequence stratigraphic implications of the Upper Sinemurian (Lower Jurassic) sandstone interval, North Celtic Sea/St George’s Channel Basins, offshore Ireland. Geological Society, London, Special Publications, 93(1), 171-192.
20. Krassay, A. A. (1998). Outcrop and drill core gamma-ray logging integrated with sequence stratigraphy: examples from Proterozoic sedimentary successions of northern Australia.
21. Liu, K., Boult, P., Painter, S., & Paterson, L. (1996). Outcrop analog for sandy braided stream reservoirs: permeability patterns in the Triassic Hawkesbury Sandstone, Sydney Basin, Australia. AAPG bulletin, 80(12), 1850-1866.
22. Mene, J., & Okengwu, K. (2020). Gamma ray log analysis in determining the depositional environment of reservoir sands: a case study of Shaka Field, Onshore Niger Delta. International Journal of Research and Innovation in Applied Science (IJRIAS), 99-105.
23. Milsom, J., & Eriksen, A. (2013). Field geophysics: EEGS 1720 South Bellaire, Suite 110, Denver, CO 80222-4303, USA.
24. Murkute, Y. (2001). Kamthi sandstones: Grain size distribution and depositional processes. Geological Society of India, 58(5), 435-440.
25. Nazeer, A., Abbasi, S. A., & Solangi, S. H. (2016). Sedimentary facies interpretation of Gamma Ray (GR) log as basic well logs in Central and Lower Indus Basin of Pakistan. Geodesy and Geodynamics, 7(6), 432-443. doi: 10.1016/j.geog.2016.06.006
26. Okengwu, M. (2020). Gamma Ray Log Analysis in Determining the Depositional Environment of Reservoir Sands: A Case Study of Shaka Field, Onshore Niger Delta.
27. Panda, M., Zhang, M., Ogbe, D., Kamath, V., & Sharma, G. (1989). Reservoir description of West Sak sands using well logs. Paper presented at the SPE Western Regional Meeting.
28. Reynolds, J. M. (2011). An introduction to applied and environmental geophysics: John Wiley & Sons.
29. Rider, M. H. (1990). Gamma-ray log shape used as a facies indicator: critical analysis of an oversimplified methodology. Geological Society, London, Special Publications, 48(1), 27-37.
30. Rider, M. H. (1996). The Geological Interpretation of Well Logs: Gulf Publishing Company.
31. Schlumberger, C. (1920). Etude sur la prospection electrique du sous-sol: Gauthier-Villars.
32. Selley, R. C. (1978). Ancient Sedimentary Environments: Cornell University Press.
33. Selley, R. C. (1985). Ancient Sedimentary Environments and Their Sub-surface Diagnosis: Cornell University Press.
34. Selley, R. C. (1998). Elements of Petroleum Geology: Elsevier Science.
35. Serra, O. (1985). Sedimentary Environments from Wireline Logs, Schlumberger Technical Services Publication No: M-081030/SMP-7008.
36. Sharma, P. V. (1997). Environmental and engineering geophysics: Cambridge university press.
37. Siddiqui, N. A., El-Ghali, M. A., Rahman, A. H. b. A., Mijinyawa, A., & Ben-Awuah, J. (2013). Depositional Environment of Shallow-Marine Sandstones from Outcrop Gamma-Ray Logs, Belait Formation, Meragang Beach, Brunei Darussalam. Research Journal of Environmental and Earth Sciences, 5(6), 305-324. doi: 10.19026/rjees.5.5705
38. Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics: Cambridge university press.
39. Tzortzis, M., Tsertos, H., Christofides, S., & Christodoulides, G. (2003). Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiation measurements, 37(3), 221-229.
40. Vail, P. R., & Wornardt Jr, W. (1991). An integrated approach to exploration and development in the 90s: well log-seismic sequence stratigraphy analysis.
41. Walker, R. G. (1992). Facies model: response to sea level change. Geol. Asso. Canada, 409.
42. Xu, X., Liu, L., Li, X., Yang, W., Cao, Y., Ma, H., . . . Chen, Z. (2021). Sequence stratigraphy, sedimentary characteristics of barrier coastal sedimentary system of the Benxi Formation (Gaoqiao area, Ordos basin) and favorable reservoir distribution. Energy Reports, 7, 5316-5329. doi: 10.1016/j.egyr.2021.08.173
43. Yang, H.Y. (2023). Reconstruction of paleoenvironmental changes using multiproxy method: examples from the Tainan Science Park Drilling Archives. National Taiwan University Department of Geology.
44. Yoshida, S., Johnson, H. D., Pye, K., & Dixon, R. J. (2004). Transgressive changes from tidal estuarine to marine embayment depositional systems: The Lower Cretaceous Woburn Sands of southern England and comparison with Holocene analogs. AAPG bulletin, 88(10), 1433-1460.
45. 李匡悌, 陳文生, & 臧振華(2008)。全新世西南海岸平原古海岸線變遷與南科園區遺址古環境解析。
46. 李孟珊, & 黃詩如(2020)。南科考古二十五載,臧振華談島嶼臺灣的歷史縮影,和那些被遺忘的小東西,國家地理。
47. 林朝棨(1957)。《臺灣地形》)。 南投:臺灣省文獻委員會。
48. 林朝棨(1961)。臺灣西南部之貝塚與其地史學意義)。 臺北市:國立臺灣大學考古人類學系。
49. 林朝棨(1966)。概說台灣第四紀的地史並討論其自然史和文化史的關係。
50. 邱水金, & 朱正宜. (2014). 南部科學工業園區第四期考古遺址發掘及監測計畫-道爺遺址發掘成果報告.
51. 邱水金, & 朱正宜. (2018). 南部科學工業園區_第四期考古遺址發掘及監測計畫-三抱竹南.
52. 孫習之. (1964). Photogeological study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petrol Geol Taiwan, 3, 39-51.
53. 孫習之. (1970). Photogeologic study of the Tainan-Hsinying coastal plain, Taiwan. Pet. Geol. Taiwan, 7, 133-144.
54. 張瑞津, 石再添, & 陳翰霖(1996)。台灣西南部台南海岸平原地形變遷之研究。國立台灣師範大學地理學系, 地理研究報告(26),頁 19。
55. 陳于高(1993)。晚更新世以來南台灣地區海水面變化與新構造運動研究。未出版之碩士論文,國立台灣大學地質學研究所。
56. 陳文山, 宋時驊, 吳樂群, 徐澔德, & 楊小青(2004a)。末次冰期以來台灣海岸平原區的海岸線變遷。國立台灣大學考古人類學刊(62),頁 40-55。
57. 陳文山, 楊志成, & 楊小青(2009)。如何建立台灣海岸平原區地下晚第四紀沉積層的地層架構。經濟部中央地質調查所特刊(22),頁 101-114。
58. 陳文山, 楊志成, 楊小青, 吳樂群, 林啟文, 張徽正, . . . 石同生(2004b)。從構造地形探討嘉南地區活動構造及構造分區。經濟部中央地質調查所彙刊, 17 民 93.09,頁 53-77。
59. 黃郁婷(2001)。嘉南平原曾文溪流域晚第四系之沉積環境曁層序初探。未出版之碩士論文,國立台灣大學地質學研究所。
60. 臧振華. (2013). 南科的古文明: 國立臺灣史前文化博物館.
61. 臧振華, 李匡悌, & 朱正宜. (2004). 臺南科學工業園區道爺遺址未劃入保存部份搶救考古計畫期末報告.
62. 劉瑩三, 劉益昌, 許清保, & 顏廷伃(2008)。晚期全新世以來台南地區海岸線變遷初探。台灣考古工作會報,頁 567-582。