簡易檢索 / 詳目顯示

研究生: 丁爽
Ding, Shuang
論文名稱: 功能性壓電材料三明治板之熱撓曲和挫屈分析與其材料組成之優化
Thermal bending and buckling analyses of functionally graded sandwich piezoelectric plates and optimization of their material composition
指導教授: 吳致平
Wu, Chi-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 有限層狀元素法功能性材料壓電板Reissner混合變分原理熱挫屈焦電彈耦合三維分析最佳化基因演算法
外文關鍵詞: Functionally graded plates, Genetic algorithm, Reissner’s mixed variational theorem, Thermal buckling, Thermal stress
相關次數: 點閱:105下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以Reissner混合變分原理為基礎,發展有限層狀元素法的歸一理論推衍,並用於具簡支撐功能性壓電材料三明治板在熱荷載作用下的三維熱挫屈及焦電彈耦合分析。該功能性材料核心層的材料性質假設沿厚度方向遵循組分體積分數的冪函數分佈,熱挫屈分析中核心層和表面層的材料性質均考慮為溫度之函數。核心層的有效材料性質由二相混合法則或Mori-Tanaka法則計算。在熱傳分析中則考慮固定溫度和熱對流兩種表面條件。文中將不同階數的有限層狀元素法解與文獻中的三維精確解進行比較,驗證其精確度與收斂性。此外,在上述分析的基礎上,本文還發展了一種結合複合形法的混合基因演算法,用於探求功能性材料板在穩態熱荷載作用下之最佳化材料組分最佳化,期使最小化板內的熱應力。此分析中板被人為劃分為Nl層,材料組分沿厚度的分佈假設為特定函數或非特定函數,並比較兩者的結果。

    Based on Reissner’s mixed variational theorem (RMVT), a unified formulation of finite layer methods (FLMs) is developed for the quasi-three-dimensional (3D) thermal buckling and coupled thermo-electro-mechanical analysis of simply-supported, sandwich piezoelectric plates embedded with a functionally graded elastic material (FGEM) core, the material properties of which are considered to be thickness-dependent. In addition, a hybrid genetic algorithm with the complex method is developed for the optimization of the material composition of a multi-layered functionally graded material plate with temperature-dependent material properties in order to minimize the thermal stresses induced in the plate when it is subjected to steady-state thermal loads.

    摘要 I Extended Abstract II 誌謝 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 第二章 FGEM與壓電材料三明治板之熱挫屈分析 7 2.1 有效材料性質 7 2.2 多層彈性壓電材料混合板的挫屈前狀態 9 2.3 多層板的臨界挫屈狀態 11 2.3.1 廣義位移假設 11 2.3.2 Reissner混合變分原理 15 2.3.3 Euler-Lagrange方程 18 2.4 數值範例 21 2.4.1 三明治FGEM板 21 2.4.2 層合型彈性壓電材料混合板 23 2.4.3 材料性質與溫度相關的三明治FGEM和壓電材料混合板 26 第三章 功能性壓電材料三明治板在熱荷載下之焦電彈耦合分析 41 3.1 有效材料性質 41 3.2 熱傳導分析 42 3.3 焦電彈耦合分析 44 3.3.1 廣義位移假設 44 3.3.2 基於Reissner混合變分原理的弱形式 46 3.3.3 系統方程和邊界條件 47 3.4 數值範例 50 3.4.1 單層均質壓電材料板 50 3.4.2 三明治FGEM和壓電材料混合板 51 第四章 FGEM板熱應力最小化之最佳材料組分 61 4.1 基於RMVT的FLM熱應力分析 61 4.2 最佳化問題 62 4.2.1 問題描述 62 4.2.2 結合複合形演算法的基因演算法 63 4.3 數值範例 65 4.3.1 單層FGEM板的熱彈耦合分析 65 4.3.2 不對稱單層FGEM板的材料組成優化 67 4.3.3 對稱三明治FGEM板的材料組分最佳化 70 第五章 結論 87 參考文獻 89

    Akbarzadeh A.H., Babaei M.H. and Chen Z.T., Coupled Thermopiezoelectric Behavior of a One-dimensional Functionally Graded Piezoelectric Medium Based on C-T Theory, Proc. IMechE. Part C- J. Mech. Eng. Sci., vol. 225, pp. 2537-2551, 2011.
    Akhras, G. and Li, W.C., Three-dimensional Thermal Buckling Analysis of Piezoelectric Composite Plates Using Finite Layer Method, Smart Mater. Struct., vol. 17, 055004, 2008.
    Akhras, G. and Li, W.C., Three-dimensional Thermal Buckling Analysis of Piezoelectric Antisymmetric Angle-ply Laminates Using Finite Layer Method, Compos. Struct., vol. 92, pp. 31-38, 2010.
    Arani A.G., Arani H.K. and Maraghi Z.K., Vibration Analysis of Sandwich Composite Micro-plate under Electro-magneto-mechanical Loadings, Appl. Math Model, vol. 40, pp. 10596-10615, 2016.
    Arani A.G., Jafari G.S. and Kolahchi R., Nonlinear Vibration Analysis of Viscoelastic Micro Nano-composite Sandwich Plates Integrated with Sensor and Actuator, Microsyst. Technol., Doi 10.1007/s00542-016-3095-9, 2017.
    Arefi M. and Zenkour A.M., Nonlocal Electro-thermo-mechanical Analysis of a Sandwich Nanoplate Containing a Kelvin-Voigt Viscoelastic Nanoplate and Two Piezoelectric Layers, Acta. Mech., vol. 228, pp. 475-493, 2017.
    Ashjari, M. and Khoshravan, M.R., Mass Optimization of Functionally Graded Plate for Mechanical Loading in the Presence of Deflection and Stress Constraints, Compos. Struct., vol. 110, pp. 118-132, 2014.
    Assis S.L. and Costa I., Electrochemical Evaluation of Ti‐13Nb‐13Zr, Ti‐6Al‐4V and Ti‐6Al‐7Nb Alloys for Biomedical Application by Long‐term Immersion Tests, Mater. Corros., vol. 58, pp. 329-333, 2007.
    Bodaghi, M. and Saidi, A.R., Thermoelastic Buckling Behavior of Thick Functionally Graded Rectangular Plates, Arch. Appl. Mech., vol. 81, pp. 1555-1572, 2011.
    Bouazza, M. and Tounsi, A., Adda-Bedis, E.A. and Megueni, A., Thermoelastic Stability Analysis of Functionally Graded Plates: An Analytical Approach, Comput. Mater. Sci., vol. 49, pp. 865-870, 2010.
    Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A., Thermal Buckling of Functionally Graded Plates According to a Four-Variable Refined Plate Theory, J. Therm. Stresses, vol. 35, pp. 677-694, 2012.
    Box, M.J., A New Method of Constrained Optimization and a Comparison with Other Methods, Comput. J., vol. 8, pp. 42-52, 1965.
    Brischetto S. and Carrera E., Refined 2D Models for the Analysis of Functionally Graded Piezoelectric Plates, J. Intell. Mater. Syst. Struct., vol. 20, pp. 1783-1797, 2009.
    Brischetto S. and Carrera E., Coupled Thermos-electro-mechanical Analysis of Smart Plates Embedding Composite and Piezoelectric Layers, J. Therm. Stresses, vol. 35, pp. 766-804, 2012.
    Bruant, I. and Proslier, L., Optimal Location of Piezoelectric Actuators for Active Vibration Control of Thin Axially Functionally Graded Beams, Int. J. Mech. Mater. Des., vol. 12, pp. 173-192, 2016.
    Carrera E., An Assessment of Mixed and Classical Theories for the Thermal Stress Analysis of Orthotropic Multilayered Plates, J. Therm. Stresses, vol. 23, pp. 797-831, 2000
    Carrera E., Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation with Numerical Assessment and Benchmarks, Arch. Comput. Methods in Eng., vol. 10, pp. 215-296, 2003.
    Carrera E., Cinefra M. and Fazzolari F.A., Some Results on Thermal Stress of Layered Plates and Shells by Using Unified Formulation, J. Therm. Stresses, vol. 36, pp. 589-625, 2013.
    Dai H.L., Rao Y.N. and Dai T., A Review of Recent Researches on FGM Cylindrical Structures under Coupled Physical Interactions, 2000-2015, Compos. Struct., vol. 152, pp. 199-225, 2016.
    De Jong, K.A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral dissertation, University of Michigan, Dissertation Abstracts International 36, 5140B (University Microfilms No. 76-9381), 1975.
    Dube G.P., Kapuria S. and Dumir P.C., Exact Piezothermoelastic Solution of Simply-supported Orthotropic Flat Panel in Cylindrical Bending, Int. J. Mech. Sci., vol. 38, pp. 1161-1177, 1996.
    Eshelby, J.D., The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems, Proc. Roy. Soc. Lod., Ser. A, vol. 241, pp. 376-396, 1957.
    Fazzolari, F.A. and Carrera, E., Thermo-Mechanical Buckling Analysis of Anisotropic Multilayered Composite and Sandwich Plates by Using Refined Variable-Kinematics Theories, J. Therm. Stresses, vol. 36, pp. 321-350, 2012.
    Gen, M. and Cheng, R., Genetic Algorithms & Engineering Design, John Wiley & Sons, Inc., New York, 1997.
    Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley Publishing Company, Inc., New York, 1989.
    Gosselin, L., Tye-Gingras, M., Mathieu-Potvin, F., Review of Utilization of Genetic Algorithms in Heat Transfer Problems, Int. J. Heat Mass Tranfer, vol. 52, pp. 2169-2188, 2009.
    Goupee, A.J. and Vel, S.S., Multi-objective Optimization of Functionally Graded Materials with Temperature-dependent Material Properties, Mater. Des., vol. 28, pp. 1861-1879, 2007.
    Grefenstette, J.J. and Baker, J.F., How Genetic Algorithms Work: A Critical Look at Implicit Parallelism, In Schaffer, J.D. (Ed.), Proc. Third Int. Conf. Genetic Algorithms (pp. 20-27). Morgan Kaufinann, San. Mateo., CA, 1989
    Hagan, M.T., Demuth, H.B. and Beale, M., Neural Network Design, PWS Publishing Company, Boston, USA, 1996.
    Harrop, P. J. and Wanklyn, J. N., The Dielectric Constant of Zirconia, Brit. J. Appl. Phys., vol. 18, pp. 739-742, 1967.
    Hill, R., A Self-consistent Mechanics of Composite Materials, J. Mech. Phys. Solids, vol. 13, pp. 213-222, 1965.
    Javaheri, R. and Elsami, M.R., Thermal Buckling of Functionally Graded Plates Based on Higher-Order Theory, J. Therm. Stresses, vol. 25, pp. 603-625, 2002.
    Jha D.K., Kant T. and Singh R.K., A Critical Review of Recent Research on Functionally Graded Plates, Compos. Struct., vol. 96, pp. 833-849, 2013.
    Kapuria, S. and Achary, G.G.S., Exact 3D Piezothermoelasticity Solution for Buckling of Hybrid Cross-ply Plates Using State Space Approach, ZAMM-Z. Angew. Math. Mech., vol. 3, pp. 189-201, 2005.
    Kapuria, S. and Achary, G.G.S., Nonlinear Coupled Zigzag Theory for Buckling of Hybrid Piezoelectric Plates, Compos. Struct., vol. 74, pp. 253-264, 2006.
    Kapuria, S. and Achary, G.G.S., Nonlinear Zigzag Theory for Electrothermomechanical Buckling of Piezoelectric Composite and Sandwich Plates, Acta. Mech., vol. 184, pp. 61-76, 2006.
    Kapuria, S. and Achary, G.G.S.. Electromechanically Coupled Zigzag Third-order Theory for Thermally Loaded Hybrid Piezoelectric Plates, AIAA J., vol. 44, pp. 160-170, 2006.
    Kapuria S., Dube G.P., Dumir P.C. and Sengupta S., Levy-type Piezothermoelastic Solution for Hybrid Plate by Using First-order Shear Deformation Theory, Compos. Part B-Eng., vol. 28, pp. 535-546, 1997.
    Kawamura, R. and Tanigawa, Y., Multipurpose Optimization Problem of Material Composition for Thermal Stress Relaxation Type of a Functionally Graded Circular Plate, Tran. Japan Soc. Mech. Eng. A., vol. 41, pp. 318-325, 1998.
    Kerner, E.H., The Elastic and Thermoelastic Properties of Composite Media, Proc. Phys. Soc. Lond. B., vol. 69, pp. 808-813, 1956.
    Kiani Y., Bagherizadeh E. and Eslami M.R., Thermal and Mechanical Buckling of Sandwich Plates with FGM Face Sheets Resting on the Pasternak Elastic Foundation, Proc. IMechE. Part C-J. Mech. Eng. Sci., vol. 226, pp. 32-41, 2011.
    Koizumi, M., Recent Progress of Functionally Graded Materials in Japan, Ceram. Eng. Sci. Proc., vol. 13, pp. 332-347, 1992.
    Koizumi, M., The Concept of FGM, Ceram. Trans., vol. 34, pp. 3-10, 1993.
    Koizumi, M., FGM Activities in Japan, Compos. Part B, vol. 28B, pp. 1-4, 1997.
    Kulikov, G.M. and Plotnikova, S.V., A Sampling Surfaces Method and its Implementation for 3D Thermal Stress Analysis of Functionally Graded Plates, Compos. Struct., vol. 120, pp. 315-325, 2015.
    Liew, K.M., He, X. Q. and Meguid, S.A., Optimal Shape Control of Functionally Graded Smart Plates Using Genetic Algorithms, Comput. Mech., vol. 33, pp. 245-253, 2004.
    Liew K.M., Yang J. and Kitipornchai S., Thermal Post-buckling of Laminated Plates Comprising Functionally Graded materials with Temperature-dependent Properties, J. Appl. Mech., vol. 71, pp. 839-850, 2004.
    Liew K.M., Zhang J.Z., Li C. and Meguid S.A., Three-dimensional Analysis of the Coupled Thermo-piezoelectro-mechanical Behaviour of Multilayered Plates using the Differential Quadrature Technique, Int. J. Solids Struct., vol. 42, pp. 4239-4257, 2005.
    Maletta, C. and Pagnotta, L., On the Determination of Mechanical Properties of Composite Laminates Using Genetic Algorithms, Int. J. Mech. Mater. Des., vol. 1, pp. 199-211, 2004.
    Mirzavand, B. and Eslami, M.R., Thermal Buckling of Simply Supported Piezoelectric FGM Cylindrical Shells, J. Therm. Stresses, vol. 30, pp. 1117-1135, 2007.
    Mirzavand, B. and Eslami, M.R., A Closed-Form Solution for Thermal Buckling of Piezoelectric FGM Rectangular Plates with Temperature-Dependent Properties, Acta. Mech., vol. 218, pp. 87-101, 2011.
    Mori, T. and Tanaka, K., Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta. Metall., vol. 21, pp. 571-574, 1973.
    Na, K.S. and Kim, J.H., Optimization of Volume Fractions for Functionally Graded Panels Considering Stress and Critical Temperature, Compos. Struct., vol. 89, pp. 509-516, 2009.
    Na, K.S. and Kim, J.H., Volume Fraction Optimization for Step-formed Functionally Graded Plates Considering Stress and Critical Temperature, Compos. Struct., vol. 92, pp. 1283-1290, 2010.
    Noor, A.K. and Burton, W.S., Three-Dimensional Solutions for Thermal Buckling of Multilayered Anisotropic Plates, J. Eng. Mech., vol. 118, pp. 683-701, 1992.
    Ootao, Y., Kawamura, R., Tanigawa, Y. and Nakamura, T., Neural Network Optimization of Material Composition of a Functionally Graded Material Plate at Arbitrary Temperature Range and Temperature Rise, Arch. Appl. Mech., vol. 68, pp. 662-676, 1998.
    Ootao, Y., Tanigawa, Y. and Ishimaru, O., Optimization of Material Composition of Functionally Graded Plate for Thermal Stress Relaxation Using a Genetic Algorithm, J. Therm. Stresses, vol. 23, pp. 257-271, 2000.
    Pagano N.J., Exact Solutions for Composite Laminates in Cylindrical Bending, J. Compos. Mater., vol. 3, pp. 398-411, 1969.
    Potgieter, E. and Stander, N., Genetic Algorithm Applied to Stiffness Maximization of Laminated Plates: Review and Comparison, Struct. Optim., vol. 15, pp. 221-229, 1998.
    Reddy, J.N., A Simple Higher-Order Theory for Laminated Composite Plates, J. Appl. Mech., vol. 51, pp. 745-752, 1984.
    Reddy J.N., An Introduction to the Finite Element Method, McGraw-Hill, New York, USA, 2006.
    Reddy, J.N. and Chin, C.D., Thermomechanical Analysis of Functionally Graded Cylinders and Plates, J . Therm. Stresses, vol. 21, pp. 593-626, 1998.
    Reddy, J.N. and Phan, N.D., Stability and Vibration of Isotropic, Orthotropic and Laminated Plates according to a Higher-order Shear Deformation Theory, J. Sound Vib., vol. 98, pp. 157-170, 1985.
    Reissner, E., On a Certain Mixed Variational Theory and a Proposed Application, Int. J. Numer. Methods Eng., vol. 20, pp. 1366-1368, 1984.
    Reissner, E., On a Mixed Variational Theory and on a Shear Deformable Plate Theory, Int. J. Numer. Methods Eng., vol. 23, pp. 193-198, 1986.
    Roy, T. and Chakraborty, D., Genetic Algorithm Based Optimal Design for Vibration Control of Composite Shell Structures Using Piezoelectric Sensors and Actuators, Int. J. Mech. Mater. Des., vol. 5, pp. 45-60, 2009.
    Shen H.S., Nonlinear Thermal Bending Response of FGM Plates due to Heat Conduction, Compos. Part B-Eng., vol. 38, pp. 201-215, 2007.
    Shen, H.S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton, 2009.
    Shen H.S. and Liew K.M., Postbuckling of Axially Loaded Functionally Graded Cylindrical Panels with Piezoelectric Actuators in Thermal Environments, J. Eng. Mech., vol. 130, pp. 982-995, 2004.
    Talha M. and Singh B.N., Thermo-mechanical Induced Vibration Characteristics of Shear Deformable Functionally Graded Ceramic-metal Plates Using the Finite Element Method, Proc. IMechE. Part C-J. Mech. Eng. Sci., vol. 225, pp. 50-65, 2010.
    Tanigawa, Y. and Matsumoto, M., Optimization of Material Composition to Minimize Thermal Stresses in Nonhomogeneous Plate Subjected to Unsteady Heat Supply, Tran. Japan Soc. Mech. Eng. A., vol. 40, pp. 84-93, 1997.
    Tessler A., Sciuva M.D. and Gherlone M., A Consistent Refinement of First-order Shear Deformation Theory for Laminated Composite and Sandwich Plates Using Improved Zigzag Kinematics, J. Mech. Mater. Struct., vol. 5, pp. 341-352, 2010.
    Tiersten H.F., Linear Piezoelectric Plate Vibration, Plenum Press, New York, USA, 1969.
    Tornabene, F. and Ceruti, A., Mixed Static and Dynamic Optimization of Four-parameter Functionally Graded Completely Doubly Curved and Degenerate Shells and Plates, Math. Probl. Eng., vol. 2013, pp. 867-879, 2013.
    Vel, S.S. and Batra, R.C., Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates, AIAA J., vol. 40, pp. 1421-1433, 2002.
    Vel, S.S. and Pelletier, J.L., Multi-objective Optimization of Functionally Graded Thick Shells for Thermal Loading, Compos. Struct., vol. 81, pp. 386-400, 2007.
    Wu C.P., Chen S.J. and Chiu K.H., Three-dimensional Static Behavior of Functionally Graded Magneto-electro-elastic Plates Using the Modified Pagano Method, Mech. Res. Commun., vol. 37, pp. 54-60, 2010
    Wu C.P., Chiu K.H. and Jiang R.Y., A Meshless Collocation Method for the Coupled Analysis of Functionally Graded Piezo-thermo-elastic Shells and Plates under Thermal Loads, Int. J. Eng. Sci., vol. 56, pp. 29-48, 2012.
    Wu C.P., Chiu K.H. and Wang Y.M., A Review on the Three-dimensional Analytical Approaches of Multilayered and Functionally Graded Piezoelectric Plates and Shells, CMC-Comput. Mater. Continua., vol. 8, pp. 93-132, 2008.
    Wu C.P. and Huang S.E., Three-dimensional Solutions of Functionally Graded Piezo-thermo-elastic Shells and Plates Using a Modified Pagano Method, CMC-Comput. Mater. Continua., vol. 12, pp. 251-281, 2009.
    Wu, C.P. and Li, H.Y., The RMVT- and PVD-Based Finite Layer Methods for the Three-Dimensional Analysis of Multilayered Composite and FGM Plates, Compos. Struct., vol. 92, pp. 2476-2496, 2010.
    Wu, C.P. and Li, H.Y., An RMVT-Based Finite Rectangular Prism Method for the 3D Analysis of Sandwich FGM Plates with Various Boundary Conditions, CMC-Comput. Mater. Continua, vol. 34, pp. 27-62, 2013.
    Wu C.P. and Liu Y.C., A Review of Semi-analytical Numerical Methods for Laminated Composite and Multilayered Functionally Graded Elastic/piezoelectric Plates and Shells, Compos. Struct., vol. 147, pp. 1-15, 2016.
    Wu, L., Thermal Buckling of a Simply Supported Moderately Thick Rectangular FGM Plate, Compos. Struct., vol. 64, pp. 211-218, 2004.
    Yaghoobi, H. and Fereidon, A., Mechanical and Thermal Buckling Analysis of Functionally Graded Plates Resting on Elastic Foundations: An Assessment of a Simple Refined nth-Order Shear Deformation Theory, Compos. Part B Eng., vol. 62, pp. 54-64, 2014.
    Yaghoobi, H., Fereidon, A., Nouri, M.K. and Mareishi, S., Thermal Buckling Analysis of Piezoelectric Functionally Graded Plates with Temperature-Dependent Properties, Mech. Adv. Mater. Struct., vol. 22, pp. 864-875, 2015.
    Yang J., Liew K.M., Wu Y.F. and Kitpornchai S., Thermo-mechanical Post-buckling of FGM Cylindrical Panels with Temperature-dependent Properties, Int. J. Solids Struct., vol. 43, pp. 307-324, 2006.
    Yang J., Kitipornchai S. and Liew K.M., Large Amplitude Vibration of Thermo-electro-mechanically Stressed FGM Laminated Plates, Comput. Methods Appl. Mech. Eng., vol. 192, pp. 3861-3885, 2003
    Yang J. and Xiang H.J., Thermo-electro-mechanical Characteristics of Functionally Graded Piezoelectric Actuators, Smart Mater. Struct., vol. 16, pp. 784-797, 2007.
    Zenkour A.M., A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part I-Deflection and Stresses, Int. J. Solids Struct., vol. 42, pp. 5224-5242, 2005.
    Zenkour, A.M. and Sobhy, M., Thermal Buckling of Functionally Graded Plates Resting on Elastic Foundations Using the Trigonometric Theory, J. Therm. Stresses, vol. 34, pp. 1119-1138, 2011.
    Zenkour A.M. and Sobhy M., A Simplified Shear and Normal Deformations Nonlocal Theory for Bending of Nanobeams in Thermal Environment, Phys. E, vol. 70, pp. 121-128, 2015.
    Zhang, L.W., Ardestani, M.M. and Liew, K.M., Isogeometric Approach for Buckling Analysis of CNT-Reinforced Composite Skew Plates under Optimal CNT-orientation, Compos. Struct., vol. 163, pp. 365-384, 2016.
    Zhang, L.W., Song, Z.G. and Liew, K.M., Optimal Shape Control of CNT Reinforced Functionally Graded Composite Plates Using Piezoelectric Patches, Compos. Part B, vol. 85, pp. 140-149, 2016.
    Zhang, L.W., Zhu, P. and Liew, K.M., Thermal Buckling of Functionally Graded Plates using a Local Kriging Meshless Method, Compos. Struct ., vol. 108, pp. 472-492, 2014.
    Zhao, X., and Liew, K.M., A Mesh-Free Method for Analysis of the Thermal and Mechanical Buckling of Functionally Graded Cylindrical Shell Panels, Comput. Mech., vol. 45, pp. 297-310, 2010.
    Zurada, J.M., Introduction to Artificial Neural Systems, PWS Publishing Company, Boston, USA, 1995.

    下載圖示 校內:2019-05-25公開
    校外:2019-05-25公開
    QR CODE