簡易檢索 / 詳目顯示

研究生: 何昱儒
Ho, Yu-Ju
論文名稱: 企業財務在危機期間之測試模型
The Test of Enterprise Finance in Crisis Periods
指導教授: 梁少懷
Liang, Shao-Huai
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 23
中文關鍵詞: 危機模型羅吉斯模型
外文關鍵詞: distress model, logistic model
相關次數: 點閱:151下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇的研究主旨為探討企業在國際爆發危機期間內發生危機事件之機率和各指標間的關聯,本研究將研究包含會計變數、市場變數並加入經濟變數等三種方向討論企業財務控制經濟因子下在泡沫經濟及2008年金融風暴到歐債危機期間的影響。

    結果總結如下 : 其一,本研究以速動比率衡量流動性,在兩段期間內結果皆呈現企業在短期內無法應付流動需求則發生危機事件可能性更高;其二,在危機模型中次貸與歐債事件期間的市場變數較為顯著。其三,在模型配適度上,會計變數的表現較好,亦即財務報表資訊比當時的市場資訊更能完整顯示危機期間的狀態;其四,在網路泡沫期間發生危機的公司具有產業集中性,會計變數較為顯著,納入過多的一般產業將使得顯著程度下降,另一方面,在次貸危機及歐債危機期間,發生危機的公司為大規模的隨機發生,不論會計變數或市場變數皆顯著。因此,建議企業控制風險時,若危機類型屬於大範圍並為隨機企業,經濟情況可能增強危機事件發生可能性,需同時參考會計變數及市場變數,若危機類型屬於小範圍並有特定群組之企業可參考會計變數。

    The main issue of this research is to test which the indicators can explain the probability of distress of firms during financial crisis. This research focus on three indicators: accounting indicators, market indicators, economic indicators. The results are different controlling economic factors between Dot-com Crush and Financial Crisis of 2008 with European Debt Crisis.

    This research finds; First, using quick ratio to weight the liquidation the firms can not meet their debt obligation in a short period will more likely to distress. Second, Market-driven variables are important factors in financial crisis of 2007-2008 with European debt crisis for distress test model. Third, model has better goodness of fit in accounting data. That is, information in financial statement capture the condition in crisis more appropriate than immediate information. Forth, in dot-com crush, the industriral concentration affect the result. The results are significant in accounting indicators when the data contains all general industry will decrease the significance. Moreover, in Financial crisis of subprime mortgage with European Debt Crisis, the results are significant no matter the indicators is accounting or market. That is, government should observe both accounting indicators and market indicator to control the risk in a wide-range-financial crisis that affect all industries. Besides, economic condition will accelerate distress in wide-range- crisis. Consequently, government should also take account of economic data for crisis that affect all industries.

    Abstract I 摘要 II Content IV Table of contents V I. Introduction 1 1. Background 1 2. Research Motive 2 3. Research Framework 4 II. Literature Review 5 III. Data and Methodology 9 1. Methodology 9 2. Data 10 IV. Empirical Results 17 V. Conclusions 22 References 24

    Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609.
    Back, B., Laitinen, T., Sere, K., & van Wezel, M. (1996). Choosing bankruptcy predictors using discriminant analysis, logit analysis, and genetic algorithms. Turku Centre for Computer Science Technical Report, 40, 1-18.
    Balse Committee on Banking Supervision. (2001). The internal ratings-based approach. Bank for international settlements.
    Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 71-111.
    Beaver, W. H., McNichols, M. F., & Rhie, J. W. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting studies, 10(1), 93-122.
    Blume, M. E., Lim, F., & MacKinlay, A. C. (1998). The declining credit quality of US corporate debt: Myth or reality?. The journal of finance, 53(4), 1389-1413.
    Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63(6), 2899-2939.
    Chan, K. C., & Chen, N. F. (1991). Structural and return characteristics of small and large firms. The Journal of Finance, 46(4), 1467-1484.
    Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537-569.
    Denis, D. J., Denis, D. K., & Sarin, A. (1997). Ownership structure and top executive turnover. Journal of financial economics, 45(2), 193-221.
    Dichev, I. D. (1998). Is the risk of bankruptcy a systematic risk?. the Journal of Finance, 53(3), 1131-1147.
    Duffie, D., & Singleton, K. J. (1999). Modeling term structures of defaultable bonds. Review of Financial studies, 12(4), 687-720.
    Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665.
    Eisenbeis, R. A. (1977). Pitfalls in the application of discriminant analysis in business, finance, and economics. The Journal of Finance, 32(3), 875-900.
    Francis, J. R., & Krishnan, J. (2002). Evidence on auditor risk-management strategies before and after the Private Securities Litigation Reform Act of 1995. Asia-Pacific Journal of Accounting & Economics, 9(2), 135-157.
    Fuertes, A. M., & Kalotychou, E. (2005). Optimal early warning systems for sovereign debt crises.
    Geiger, M. A., Raghunandan, K., & Rama, D. V. (2005). Recent changes in the association between bankruptcies and prior audit opinions. Auditing: A Journal of Practice & Theory, 24(1), 21-35.
    Gilson, S. C. (1997). Transactions costs and capital structure choice: Evidence from financially distressed firms. The Journal of Finance, 52(1), 161-196.
    Gilson, S. C., John, K., & Lang, L. H. (1990). Troubled debt restructurings: An empirical study of private reorganization of firms in default. Journal of financial economics, 27(2), 315-353.
    Griffin, J. M., & Lemmon, M. L. (2002). Book–to–market equity, distress risk, and stock returns. The Journal of Finance, 57(5), 2317-2336.
    Hair, J., Anderson, R., Tatham, R., & Black, W. (1992). Multivariate data analysis Macmillan Publishing Company. New York.

    Joy, O. M., & Tollefson, J. O. (1975). On the financial applications of discriminant analysis. Journal of Financial and Quantitative Analysis, 10(05), 723-739.
    Kaplan, R. S., & Urwitz, G. (1979). Statistical models of bond ratings: A methodological inquiry. Journal of business, 231-261.
    Lev, B. (1974). Financial statement analysis: a new approach (pp. 133-51). Englewood Cliffs, NJ: Prentice-Hall.
    Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. Journal of Accounting Research, 380-395.
    Molina, C. A. (2005). Are firms underleveraged? An examination of the effect of leverage on default probabilities. The Journal of Finance, 60(3), 1427-1459.
    Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131.
    Pagano, M., Panetta, F., & Zingales, L. (1998). Why do companies go public? An empirical analysis. The Journal of Finance, 53(1), 27-64.
    Palepu, K. G. (1986). Predicting takeover targets: A methodological and empirical analysis. Journal of accounting and economics, 8(1), 3-35.
    Queen, M., & Roll, R. (1987). Firm mortality: Using market indicators to predict survival. Financial Analysts Journal, 9-26.
    Scott, J. (1981). The probability of bankruptcy: a comparison of empirical predictions and theoretical models. Journal of Banking & Finance, 5(3), 317-344.
    Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1), 101-124.
    Theodossiou, P. T. (1993). Predicting shifts in the mean of a multivariate time series process: an application in predicting business failures. Journal of the American Statistical Association, 88(422), 441-449.
    Wilson, T. C. (1998). Portfolio credit risk.
    Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting research, 59-82.
    柯貞伃. (2009). 台灣股市規模效應與發生財務危機事件機率之關連. PhD Thesis.
    黃博怡, 張大成, & 江欣怡. (2006). 考慮總體經濟因素之企業危機預警模型.
    蔡璧徽, & 黃鈺萍. (2010). 財務危機預測模型之比較分析. 當代會計, 11(1), 51-78.

    下載圖示 校內:2020-06-08公開
    校外:2020-06-08公開
    QR CODE